These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 15378533

  • 1. Biased fragment distribution in MC simulation of protein folding.
    Martineau E, L'Heureux PJ, Gunn JR.
    J Comput Chem; 2004 Nov 30; 25(15):1895-903. PubMed ID: 15378533
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations.
    Ulmschneider JP, Ulmschneider MB, Di Nola A.
    J Phys Chem B; 2006 Aug 24; 110(33):16733-42. PubMed ID: 16913813
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Study of the Villin headpiece folding dynamics by combining coarse-grained Monte Carlo evolution and all-atom molecular dynamics.
    De Mori GM, Colombo G, Micheletti C.
    Proteins; 2005 Feb 01; 58(2):459-71. PubMed ID: 15521059
    [Abstract] [Full Text] [Related]

  • 7. The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation.
    Shimada J, Kussell EL, Shakhnovich EI.
    J Mol Biol; 2001 Apr 20; 308(1):79-95. PubMed ID: 11302709
    [Abstract] [Full Text] [Related]

  • 8. Folding simulations of small proteins.
    Kim SY, Lee J, Lee J.
    Biophys Chem; 2005 Apr 01; 115(2-3):195-200. PubMed ID: 15752604
    [Abstract] [Full Text] [Related]

  • 9. Overcoming entropic barrier with coupled sampling at dual resolutions.
    Lwin TZ, Luo R.
    J Chem Phys; 2005 Nov 15; 123(19):194904. PubMed ID: 16321110
    [Abstract] [Full Text] [Related]

  • 10. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model.
    Kolinski A, Skolnick J.
    Proteins; 1998 Sep 01; 32(4):475-94. PubMed ID: 9726417
    [Abstract] [Full Text] [Related]

  • 11. New Monte Carlo algorithms for protein folding.
    Hansmann UH, Okamoto Y.
    Curr Opin Struct Biol; 1999 Apr 01; 9(2):177-83. PubMed ID: 10322208
    [Abstract] [Full Text] [Related]

  • 12. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL, Hassan SA, Kortagere S, Weinstein H.
    Proteins; 2006 Aug 15; 64(3):673-90. PubMed ID: 16729264
    [Abstract] [Full Text] [Related]

  • 13. Significance of conformational biases in Monte Carlo simulations of protein folding: lessons from Metropolis-Hastings approach.
    Przytycka T.
    Proteins; 2004 Nov 01; 57(2):338-44. PubMed ID: 15340921
    [Abstract] [Full Text] [Related]

  • 14. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations.
    Okamoto Y.
    J Mol Graph Model; 2004 May 01; 22(5):425-39. PubMed ID: 15099838
    [Abstract] [Full Text] [Related]

  • 15. A new Hybrid Monte Carlo algorithm for protein potential function test and structure refinement.
    Zhang H.
    Proteins; 1999 Mar 01; 34(4):464-71. PubMed ID: 10081959
    [Abstract] [Full Text] [Related]

  • 16. Genetic algorithms for protein folding simulations.
    Unger R, Moult J.
    J Mol Biol; 1993 May 05; 231(1):75-81. PubMed ID: 8496967
    [Abstract] [Full Text] [Related]

  • 17. A knowledge-based move set for protein folding.
    Chen WW, Yang JS, Shakhnovich EI.
    Proteins; 2007 Feb 15; 66(3):682-8. PubMed ID: 17143895
    [Abstract] [Full Text] [Related]

  • 18. Towards realistic description of collective motions in the lattice protein folding models.
    Yesylevskyy SO, Demchenko AP.
    Biophys Chem; 2004 Apr 01; 109(1):17-40. PubMed ID: 15059657
    [Abstract] [Full Text] [Related]

  • 19. Fast protein structure prediction using Monte Carlo simulations with modal moves.
    Carnevali P, Tóth G, Toubassi G, Meshkat SN.
    J Am Chem Soc; 2003 Nov 26; 125(47):14244-5. PubMed ID: 14624550
    [Abstract] [Full Text] [Related]

  • 20. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide.
    Totrov M, Abagyan R.
    Biopolymers; 2001 Nov 26; 60(2):124-33. PubMed ID: 11455546
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.