These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


366 related items for PubMed ID: 15382247

  • 1. Linear response theory: an alternative to PB and GB methods for the analysis of molecular dynamics trajectories?
    Morreale A, de la Cruz X, Meyer T, Gelpí JL, Luque FJ, Orozco M.
    Proteins; 2004 Nov 15; 57(3):458-67. PubMed ID: 15382247
    [Abstract] [Full Text] [Related]

  • 2. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA, Mehler EL, Zhang D, Weinstein H.
    Proteins; 2003 Apr 01; 51(1):109-25. PubMed ID: 12596268
    [Abstract] [Full Text] [Related]

  • 3. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U, Caflisch A.
    J Comput Chem; 2008 Apr 15; 29(5):701-15. PubMed ID: 17918282
    [Abstract] [Full Text] [Related]

  • 4. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS, Elcock AH.
    J Am Chem Soc; 2006 Jun 21; 128(24):7796-806. PubMed ID: 16771493
    [Abstract] [Full Text] [Related]

  • 5. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN, Almagro JC, Hermans J.
    Proteins; 1998 Sep 01; 32(4):399-413. PubMed ID: 9726412
    [Abstract] [Full Text] [Related]

  • 6. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis.
    Tan C, Yang L, Luo R.
    J Phys Chem B; 2006 Sep 21; 110(37):18680-7. PubMed ID: 16970499
    [Abstract] [Full Text] [Related]

  • 7. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models.
    Simonson T, Carlsson J, Case DA.
    J Am Chem Soc; 2004 Apr 07; 126(13):4167-80. PubMed ID: 15053606
    [Abstract] [Full Text] [Related]

  • 8. Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular dynamics.
    Wang J, Tan C, Chanco E, Luo R.
    Phys Chem Chem Phys; 2010 Feb 07; 12(5):1194-202. PubMed ID: 20094685
    [Abstract] [Full Text] [Related]

  • 9. Continuum solvation models in the linear interaction energy method.
    Carlsson J, Andér M, Nervall M, Aqvist J.
    J Phys Chem B; 2006 Jun 22; 110(24):12034-41. PubMed ID: 16800513
    [Abstract] [Full Text] [Related]

  • 10. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L, Liang S, Pilcher MM, Meroueh SO.
    Protein Eng Des Sel; 2009 Sep 22; 22(9):575-86. PubMed ID: 19643976
    [Abstract] [Full Text] [Related]

  • 11. A semi-implicit solvent model for the simulation of peptides and proteins.
    Basdevant N, Borgis D, Ha-Duong T.
    J Comput Chem; 2004 Jun 22; 25(8):1015-29. PubMed ID: 15067677
    [Abstract] [Full Text] [Related]

  • 12. Theory and applications of the generalized Born solvation model in macromolecular simulations.
    Tsui V, Case DA.
    Biopolymers; 2004 Jun 22; 56(4):275-91. PubMed ID: 11754341
    [Abstract] [Full Text] [Related]

  • 13. Partition of protein solvation into group contributions from molecular dynamics simulations.
    Morreale A, de la Cruz X, Meyer T, Gelpí JL, Luque FJ, Orozco M.
    Proteins; 2005 Jan 01; 58(1):101-9. PubMed ID: 15517587
    [Abstract] [Full Text] [Related]

  • 14. Nonuniform charge scaling (NUCS): a practical approximation of solvent electrostatic screening in proteins.
    Schwarzl SM, Huang D, Smith JC, Fischer S.
    J Comput Chem; 2005 Oct 01; 26(13):1359-71. PubMed ID: 16021598
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method.
    Lee MS, Olson MA.
    J Phys Chem B; 2005 Mar 24; 109(11):5223-36. PubMed ID: 16863188
    [Abstract] [Full Text] [Related]

  • 16. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M, Totrov M, Abagyan R.
    J Mol Recognit; 1999 Mar 24; 12(3):177-90. PubMed ID: 10398408
    [Abstract] [Full Text] [Related]

  • 17. A comparative theoretical study of dipeptide solvation in water.
    Hugosson HW, Laio A, Maurer P, Rothlisberger U.
    J Comput Chem; 2006 Apr 15; 27(5):672-84. PubMed ID: 16477697
    [Abstract] [Full Text] [Related]

  • 18. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX, Yu L, Gong LD, Liu C, Yang ZZ.
    J Chem Phys; 2011 May 21; 134(19):194115. PubMed ID: 21599052
    [Abstract] [Full Text] [Related]

  • 19. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation.
    Lu BZ, Chen WZ, Wang CX, Xu XJ.
    Proteins; 2002 Aug 15; 48(3):497-504. PubMed ID: 12112674
    [Abstract] [Full Text] [Related]

  • 20. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M, Wong CF.
    J Phys Chem A; 2006 Apr 13; 110(14):4873-9. PubMed ID: 16599457
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.