These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


402 related items for PubMed ID: 15388846

  • 41. Carboxy terminal domain of the largest subunit of RNA polymerase II of Leishmania donovani has an unusually low number of phosphorylation sites.
    Dasgupta A, Sharma S, Das A, Sarkar D, Majumder H.
    Med Sci Monit; 2002 May; 8(5):CR341-50. PubMed ID: 12011776
    [Abstract] [Full Text] [Related]

  • 42. The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis.
    Schuhmann H, Huesgen PF, Gietl C, Adamska I.
    Plant Physiol; 2008 Dec; 148(4):1847-56. PubMed ID: 18952862
    [Abstract] [Full Text] [Related]

  • 43. Abscisic acid does not influence the subcellular distribution of the HYL1 protein from Arabidopsis thaliana.
    Lesicka-Górecka J, Szarzyńska B, Sawczak M, Bagdiul I, Górski P, Jarmołowski A, Szweykowska-Kulińska Z.
    Acta Biochim Pol; 2008 Dec; 55(3):517-24. PubMed ID: 18714403
    [Abstract] [Full Text] [Related]

  • 44. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation.
    Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H.
    Mol Cell; 2006 Jan 20; 21(2):227-37. PubMed ID: 16427012
    [Abstract] [Full Text] [Related]

  • 45. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression.
    Hirose Y, Ohkuma Y.
    J Biochem; 2007 May 20; 141(5):601-8. PubMed ID: 17405796
    [Abstract] [Full Text] [Related]

  • 46. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae.
    Kobor MS, Simon LD, Omichinski J, Zhong G, Archambault J, Greenblatt J.
    Mol Cell Biol; 2000 Oct 20; 20(20):7438-49. PubMed ID: 11003641
    [Abstract] [Full Text] [Related]

  • 47. Functional characterization of small CTD phosphatases.
    Yeo M, Lin PS.
    Methods Mol Biol; 2007 Oct 20; 365():335-46. PubMed ID: 17200573
    [Abstract] [Full Text] [Related]

  • 48. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase.
    Ghosh A, Shuman S, Lima CD.
    Mol Cell; 2008 Nov 21; 32(4):478-90. PubMed ID: 19026779
    [Abstract] [Full Text] [Related]

  • 49. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice.
    Ji H, Kim SR, Kim YH, Kim H, Eun MY, Jin ID, Cha YS, Yun DW, Ahn BO, Lee MC, Lee GS, Yoon UH, Lee JS, Lee YH, Suh SC, Jiang W, Yang JI, Jin P, McCouch SR, An G, Koh HJ.
    Plant J; 2010 Jan 21; 61(1):96-106. PubMed ID: 19807881
    [Abstract] [Full Text] [Related]

  • 50. The Arabidopsis thaliana putative sialyltransferase resides in the Golgi apparatus but lacks the ability to transfer sialic acid.
    Daskalova SM, Pah AR, Baluch DP, Lopez LC.
    Plant Biol (Stuttg); 2009 May 21; 11(3):284-99. PubMed ID: 19470101
    [Abstract] [Full Text] [Related]

  • 51. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II.
    Hajheidari M, Farrona S, Huettel B, Koncz Z, Koncz C.
    Plant Cell; 2012 Apr 21; 24(4):1626-42. PubMed ID: 22547781
    [Abstract] [Full Text] [Related]

  • 52. The N-terminal ATPase AT-hook-containing region of the Arabidopsis chromatin-remodeling protein SPLAYED is sufficient for biological activity.
    Su Y, Kwon CS, Bezhani S, Huvermann B, Chen C, Peragine A, Kennedy JF, Wagner D.
    Plant J; 2006 May 21; 46(4):685-99. PubMed ID: 16640604
    [Abstract] [Full Text] [Related]

  • 53. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
    Pons T, Paramonov I, Boullosa C, Ibáñez K, Rojas AM, Valencia A.
    Proteins; 2014 Jan 21; 82(1):103-18. PubMed ID: 23900790
    [Abstract] [Full Text] [Related]

  • 54. Solution structure of the C-terminal nucleoprotein-RNA binding domain of the vesicular stomatitis virus phosphoprotein.
    Ribeiro EA, Favier A, Gerard FC, Leyrat C, Brutscher B, Blondel D, Ruigrok RW, Blackledge M, Jamin M.
    J Mol Biol; 2008 Oct 03; 382(2):525-38. PubMed ID: 18657547
    [Abstract] [Full Text] [Related]

  • 55. Structure and mechanism of RNA polymerase II CTD phosphatases.
    Kamenski T, Heilmeier S, Meinhart A, Cramer P.
    Mol Cell; 2004 Aug 13; 15(3):399-407. PubMed ID: 15304220
    [Abstract] [Full Text] [Related]

  • 56. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.
    Usami T, Matsushita T, Oka Y, Mochizuki N, Nagatani A.
    Plant Cell Physiol; 2007 Mar 13; 48(3):424-33. PubMed ID: 17251203
    [Abstract] [Full Text] [Related]

  • 57. Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control.
    Oelgeschläger T.
    J Cell Physiol; 2002 Feb 13; 190(2):160-9. PubMed ID: 11807820
    [Abstract] [Full Text] [Related]

  • 58. An allelic series reveals essential roles for FY in plant development in addition to flowering-time control.
    Henderson IR, Liu F, Drea S, Simpson GG, Dean C.
    Development; 2005 Aug 13; 132(16):3597-607. PubMed ID: 16033802
    [Abstract] [Full Text] [Related]

  • 59. Molecular characterization of Arabidopsis thaliana PUF proteins--binding specificity and target candidates.
    Francischini CW, Quaggio RB.
    FEBS J; 2009 Oct 13; 276(19):5456-70. PubMed ID: 19682068
    [Abstract] [Full Text] [Related]

  • 60. Trichomonas vaginalis initiator binding protein (IBP39) and RNA polymerase II large subunit carboxy terminal domain interaction.
    Lau AO, Smith AJ, Brown MT, Johnson PJ.
    Mol Biochem Parasitol; 2006 Nov 13; 150(1):56-62. PubMed ID: 16879883
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.