These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


384 related items for PubMed ID: 15388865

  • 1. Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme.
    Warwicker J.
    Protein Sci; 2004 Oct; 13(10):2793-805. PubMed ID: 15388865
    [Abstract] [Full Text] [Related]

  • 2. pKa predictions with a coupled finite difference Poisson-Boltzmann and Debye-Hückel method.
    Warwicker J.
    Proteins; 2011 Dec; 79(12):3374-80. PubMed ID: 21661058
    [Abstract] [Full Text] [Related]

  • 3. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F.
    J Mol Biol; 2000 Jul 28; 300(5):1335-59. PubMed ID: 10903873
    [Abstract] [Full Text] [Related]

  • 4. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
    Gunner MR, Zhu X, Klein MC.
    Proteins; 2011 Dec 28; 79(12):3306-19. PubMed ID: 21910138
    [Abstract] [Full Text] [Related]

  • 5. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
    Ibarra-Molero B, Loladze VV, Makhatadze GI, Sanchez-Ruiz JM.
    Biochemistry; 1999 Jun 22; 38(25):8138-49. PubMed ID: 10387059
    [Abstract] [Full Text] [Related]

  • 6. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD, Sidhu G, Nielsen JE, Brayer GD, Withers SG, McIntosh LP.
    Biochemistry; 2001 Aug 28; 40(34):10115-39. PubMed ID: 11513590
    [Abstract] [Full Text] [Related]

  • 7. Optimizing pKa computation in proteins with pH adapted conformations.
    Kieseritzky G, Knapp EW.
    Proteins; 2008 May 15; 71(3):1335-48. PubMed ID: 18058906
    [Abstract] [Full Text] [Related]

  • 8. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA, Wang Y, Shi C, Pastoor KJ, Nguyen BL, Xia K, Shen JK.
    Proteins; 2011 Dec 15; 79(12):3364-73. PubMed ID: 21748801
    [Abstract] [Full Text] [Related]

  • 9. Toward the accurate first-principles prediction of ionization equilibria in proteins.
    Khandogin J, Brooks CL.
    Biochemistry; 2006 Aug 08; 45(31):9363-73. PubMed ID: 16878971
    [Abstract] [Full Text] [Related]

  • 10. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.
    Stroganov OV, Novikov FN, Zeifman AA, Stroylov VS, Chilov GG.
    Proteins; 2011 Sep 08; 79(9):2693-710. PubMed ID: 21769942
    [Abstract] [Full Text] [Related]

  • 11. Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.
    Jao SC, English Ospina SM, Berdis AJ, Starke DW, Post CB, Mieyal JJ.
    Biochemistry; 2006 Apr 18; 45(15):4785-96. PubMed ID: 16605247
    [Abstract] [Full Text] [Related]

  • 12. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA, Whitten ST, Hilser VJ, García-Moreno E B.
    Proteins; 2006 Apr 01; 63(1):113-26. PubMed ID: 16400648
    [Abstract] [Full Text] [Related]

  • 13. A theoretical analysis on hydration thermodynamics of proteins.
    Imai T, Harano Y, Kinoshita M, Kovalenko A, Hirata F.
    J Chem Phys; 2006 Jul 14; 125(2):24911. PubMed ID: 16848615
    [Abstract] [Full Text] [Related]

  • 14. Improving pKa calculations with consideration of hydration entropy.
    Warwicker J.
    Protein Eng; 1997 Jul 14; 10(7):809-14. PubMed ID: 9342146
    [Abstract] [Full Text] [Related]

  • 15. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin.
    Dillet V, Dyson HJ, Bashford D.
    Biochemistry; 1998 Jul 14; 37(28):10298-306. PubMed ID: 9665738
    [Abstract] [Full Text] [Related]

  • 16. Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues.
    García-Mayoral MF, Pérez-Cañadillas JM, Santoro J, Ibarra-Molero B, Sanchez-Ruiz JM, Lacadena J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M.
    Biochemistry; 2003 Nov 18; 42(45):13122-33. PubMed ID: 14609322
    [Abstract] [Full Text] [Related]

  • 17. Self-consistent field approach to protein structure and stability. I: pH dependence of electrostatic contribution.
    Dimitrov RA, Crichton RR.
    Proteins; 1997 Apr 18; 27(4):576-96. PubMed ID: 9141137
    [Abstract] [Full Text] [Related]

  • 18. Energetics of charge-charge interactions between residues adjacent in sequence.
    Loladze VV, Makhatadze GI.
    Proteins; 2011 Dec 18; 79(12):3494-9. PubMed ID: 22072523
    [Abstract] [Full Text] [Related]

  • 19. Role of opposite charges in protein electrospray ionization mass spectrometry.
    Samalikova M, Grandori R.
    J Mass Spectrom; 2003 Sep 18; 38(9):941-7. PubMed ID: 14505321
    [Abstract] [Full Text] [Related]

  • 20. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N, Nilsson L.
    J Mol Biol; 2007 Sep 21; 372(3):798-816. PubMed ID: 17681533
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.