These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
288 related items for PubMed ID: 15446873
1. Iron chelation properties of an extracellular siderophore exochelin MS. Dhungana S, Ratledge C, Crumbliss AL. Inorg Chem; 2004 Oct 04; 43(20):6274-83. PubMed ID: 15446873 [Abstract] [Full Text] [Related]
6. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A, Maigut J, Meier R, Szilágyi PA, Buschmann HJ, Massa W, Homonnay Z, van Eldik R. Inorg Chem; 2009 Aug 17; 48(16):7864-84. PubMed ID: 19618946 [Abstract] [Full Text] [Related]
7. Characterization of the aqueous iron(III) chelation chemistry of a potential Trojan Horse antimicrobial agent: chelate structure, stability and pH dependent speciation. Harrington JM, Gootz T, Flanagan M, Lall M, O'Donnell J, Winton J, Mueller J, Crumbliss AL. Biometals; 2012 Oct 17; 25(5):1023-36. PubMed ID: 22855208 [Abstract] [Full Text] [Related]
8. Glycosiderophores: synthesis of tris-hydroxamate siderophores based on a galactose or glycero central scaffold, Fe(III) complexation studies. Neff C, Bellot F, Waern JB, Lambert F, Brandel J, Serratrice G, Gaboriau F, Policar C. J Inorg Biochem; 2012 Jul 17; 112():59-67. PubMed ID: 22551986 [Abstract] [Full Text] [Related]
10. Iron(III) coordination properties of a pyoverdin siderophore produced by Pseudomonas putida ATCC 33015. Boukhalfa H, Reilly SD, Michalczyk R, Iyer S, Neu MP. Inorg Chem; 2006 Jul 10; 45(14):5607-16. PubMed ID: 16813425 [Abstract] [Full Text] [Related]
11. Synthesis, siderophore activity and iron(III) chelation chemistry of a novel mono-hydroxamate, bis-catecholate siderophore mimic: N(alpha),-N(epsilon)-Bis[2,3-dihydroxybenzoyl]-l-lysyl-(gamma-N-methyl-N-hydroxyamido)-L-glutamic acid. Mies KA, Gebhardt P, Möllmann U, Crumbliss AL. J Inorg Biochem; 2008 Apr 10; 102(4):850-61. PubMed ID: 18272225 [Abstract] [Full Text] [Related]
12. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Velusamy M, Mayilmurugan R, Palaniandavar M. Inorg Chem; 2004 Oct 04; 43(20):6284-93. PubMed ID: 15446874 [Abstract] [Full Text] [Related]
16. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity. Visvaganesan K, Mayilmurugan R, Suresh E, Palaniandavar M. Inorg Chem; 2007 Nov 26; 46(24):10294-306. PubMed ID: 17958355 [Abstract] [Full Text] [Related]
17. Iron(III) complexing ability of carbohydrate derivatives. Ferrari E, Saladini M. J Inorg Biochem; 2004 Jun 26; 98(6):1002-8. PubMed ID: 15149808 [Abstract] [Full Text] [Related]
18. Hard and soft X-ray absorption spectroscopic investigation of aqueous Fe(III)-hydroxamate siderophore complexes. Edwards DC, Myneni SC. J Phys Chem A; 2005 Nov 17; 109(45):10249-56. PubMed ID: 16833318 [Abstract] [Full Text] [Related]