These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


385 related items for PubMed ID: 15450974

  • 1. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa.
    Keeley A, Soldati D.
    Trends Cell Biol; 2004 Oct; 14(10):528-32. PubMed ID: 15450974
    [Abstract] [Full Text] [Related]

  • 2. Molecular dissection of host cell invasion by the apicomplexans: the glideosome.
    Soldati-Favre D.
    Parasite; 2008 Sep; 15(3):197-205. PubMed ID: 18814681
    [Abstract] [Full Text] [Related]

  • 3. Mechanisms controlling glideosome function in apicomplexans.
    Daher W, Soldati-Favre D.
    Curr Opin Microbiol; 2009 Aug; 12(4):408-14. PubMed ID: 19577950
    [Abstract] [Full Text] [Related]

  • 4. [The glideosome, a unique machinery that assists the Apicomplexa in gliding into host cells].
    Frénal K, Soldati-Favre D.
    Med Sci (Paris); 2013 May; 29(5):515-22. PubMed ID: 23732101
    [Abstract] [Full Text] [Related]

  • 5. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion.
    Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D.
    Cell Host Microbe; 2016 Dec 14; 20(6):731-743. PubMed ID: 27978434
    [Abstract] [Full Text] [Related]

  • 6. Regulation of apicomplexan actin-based motility.
    Baum J, Papenfuss AT, Baum B, Speed TP, Cowman AF.
    Nat Rev Microbiol; 2006 Aug 14; 4(8):621-8. PubMed ID: 16845432
    [Abstract] [Full Text] [Related]

  • 7. Gliding motility powers invasion and egress in Apicomplexa.
    Frénal K, Dubremetz JF, Lebrun M, Soldati-Favre D.
    Nat Rev Microbiol; 2017 Nov 14; 15(11):645-660. PubMed ID: 28867819
    [Abstract] [Full Text] [Related]

  • 8. Gliding motility in apicomplexan parasites.
    Heintzelman MB.
    Semin Cell Dev Biol; 2015 Oct 14; 46():135-42. PubMed ID: 26428297
    [Abstract] [Full Text] [Related]

  • 9. Assessment of phosphorylation in Toxoplasma glideosome assembly and function.
    Jacot D, Frénal K, Marq JB, Sharma P, Soldati-Favre D.
    Cell Microbiol; 2014 Oct 14; 16(10):1518-32. PubMed ID: 24779470
    [Abstract] [Full Text] [Related]

  • 10. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex.
    Jones ML, Kitson EL, Rayner JC.
    Mol Biochem Parasitol; 2006 May 14; 147(1):74-84. PubMed ID: 16513191
    [Abstract] [Full Text] [Related]

  • 11. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion.
    Meissner M, Schlüter D, Soldati D.
    Science; 2002 Oct 25; 298(5594):837-40. PubMed ID: 12399593
    [Abstract] [Full Text] [Related]

  • 12. Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility.
    Rompikuntal PK, Kent RS, Foe IT, Deng B, Bogyo M, Ward GE.
    mSphere; 2021 May 19; 6(3):. PubMed ID: 34011689
    [Abstract] [Full Text] [Related]

  • 13. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis.
    Dowse T, Soldati D.
    Curr Opin Microbiol; 2004 Aug 19; 7(4):388-96. PubMed ID: 15358257
    [Abstract] [Full Text] [Related]

  • 14. The role of the cytoskeleton in host cell invasion by Toxoplasma gondii.
    Dobrowolski J, Sibley LD.
    Behring Inst Mitt; 1997 Mar 19; (99):90-6. PubMed ID: 9303207
    [Abstract] [Full Text] [Related]

  • 15. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion.
    Whitelaw JA, Latorre-Barragan F, Gras S, Pall GS, Leung JM, Heaslip A, Egarter S, Andenmatten N, Nelson SR, Warshaw DM, Ward GE, Meissner M.
    BMC Biol; 2017 Jan 18; 15(1):1. PubMed ID: 28100223
    [Abstract] [Full Text] [Related]

  • 16. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion.
    Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D.
    PLoS Pathog; 2014 Oct 18; 10(10):e1004504. PubMed ID: 25393004
    [Abstract] [Full Text] [Related]

  • 17. Actin/myosin-based gliding motility in apicomplexan parasites.
    Matuschewski K, Schüler H.
    Subcell Biochem; 2008 Oct 18; 47():110-20. PubMed ID: 18512346
    [Abstract] [Full Text] [Related]

  • 18. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells.
    Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D.
    PLoS Pathog; 2016 Jan 18; 12(1):e1005388. PubMed ID: 26760042
    [Abstract] [Full Text] [Related]

  • 19. Cellular and molecular mechanics of gliding locomotion in eukaryotes.
    Heintzelman MB.
    Int Rev Cytol; 2006 Jan 18; 251():79-129. PubMed ID: 16939778
    [Abstract] [Full Text] [Related]

  • 20. Intracellular parasite invasion strategies.
    Sibley LD.
    Science; 2004 Apr 09; 304(5668):248-53. PubMed ID: 15073368
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.