These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 15453758
1. Control of viscoelasticity using redox reaction. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M. J Am Chem Soc; 2004 Oct 06; 126(39):12282-3. PubMed ID: 15453758 [Abstract] [Full Text] [Related]
2. Electrochemical generation of gradients in surfactant concentration across microfluidic channels. Liu X, Abbott NL. Anal Chem; 2009 Jan 15; 81(2):772-81. PubMed ID: 19086794 [Abstract] [Full Text] [Related]
3. Methods for generation of spatial gradients in concentration of monomeric surfactants and micelles in microfluidic systems. Liu X, Graham MD, Abbott NL. Langmuir; 2007 Sep 11; 23(19):9578-85. PubMed ID: 17705408 [Abstract] [Full Text] [Related]
4. Unusual viscoelasticity behaviour in aqueous solutions containing a photoresponsive amphiphile. Takahashi Y, Yamamoto Y, Hata S, Kondo Y. J Colloid Interface Sci; 2013 Oct 01; 407():370-4. PubMed ID: 23838330 [Abstract] [Full Text] [Related]
5. Reversible condensation of DNA using a redox-active surfactant. Hays ME, Jewell CM, Lynn DM, Abbott NL. Langmuir; 2007 May 08; 23(10):5609-14. PubMed ID: 17428073 [Abstract] [Full Text] [Related]
7. Electrochemical control of the interactions of polymers and redox-active surfactants. Hays ME, Abbott NL. Langmuir; 2005 Dec 06; 21(25):12007-15. PubMed ID: 16316146 [Abstract] [Full Text] [Related]
8. Demulsification of Redox-Active Emulsions by Chemical Oxidation. Takahashi Y, Koizumi N, Kondo Y. Langmuir; 2016 Aug 02; 32(30):7556-63. PubMed ID: 27402350 [Abstract] [Full Text] [Related]
9. Photoinduced reversible change of fluid viscosity. Sakai H, Orihara Y, Kodashima H, Matsumura A, Ohkubo T, Tsuchiya K, Abe M. J Am Chem Soc; 2005 Oct 05; 127(39):13454-5. PubMed ID: 16190682 [Abstract] [Full Text] [Related]
10. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity. Zhao W, Hao J. J Colloid Interface Sci; 2016 Sep 15; 478():303-10. PubMed ID: 27314643 [Abstract] [Full Text] [Related]
11. Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils. Sharma SC, Shrestha RG, Shrestha LK, Aramaki K. J Phys Chem B; 2009 Feb 12; 113(6):1615-22. PubMed ID: 19193166 [Abstract] [Full Text] [Related]
12. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)? Zhao M, Zhang Y, Zou C, Dai C, Gao M, Li Y, Lv W, Jiang J, Wu Y. Materials (Basel); 2017 Sep 18; 10(9):. PubMed ID: 28927008 [Abstract] [Full Text] [Related]
13. Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system. Yin H, Lin Y, Huang J. J Colloid Interface Sci; 2009 Oct 01; 338(1):177-83. PubMed ID: 19560154 [Abstract] [Full Text] [Related]
16. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution. Dong B, Zhang J, Zheng L, Wang S, Li X, Inoue T. J Colloid Interface Sci; 2008 Mar 01; 319(1):338-43. PubMed ID: 18076899 [Abstract] [Full Text] [Related]
17. Redox-triggered mixing and demixing of surfactants within assemblies formed in solution and at surfaces. Smith TJ, Wang C, Abbott NL. J Colloid Interface Sci; 2017 Sep 15; 502():122-133. PubMed ID: 28478219 [Abstract] [Full Text] [Related]
18. Micellar shape transition under dilute salt-free conditions: promotion and self-fluorescence monitoring of stimuli-responsive viscoelasticity by 1- and 2-naphthols. Saha SK, Jha M, Ali M, Chakraborty A, Bit G, Das SK. J Phys Chem B; 2008 Apr 17; 112(15):4642-7. PubMed ID: 18358025 [Abstract] [Full Text] [Related]