These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 15455178
1. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Chen J, Lin H, Hu M. Cancer Chemother Pharmacol; 2005 Feb; 55(2):159-69. PubMed ID: 15455178 [Abstract] [Full Text] [Related]
2. Disposition of flavonoids via enteric recycling: enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates. Jia X, Chen J, Lin H, Hu M. J Pharmacol Exp Ther; 2004 Sep; 310(3):1103-13. PubMed ID: 15128864 [Abstract] [Full Text] [Related]
3. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models. Jeong EJ, Jia X, Hu M. Mol Pharm; 2005 Sep; 2(4):319-28. PubMed ID: 16053335 [Abstract] [Full Text] [Related]
4. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model. Jeong EJ, Lin H, Hu M. J Pharmacol Exp Ther; 2004 Jul; 310(1):376-85. PubMed ID: 15020665 [Abstract] [Full Text] [Related]
5. Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Chen J, Wang S, Jia X, Bajimaya S, Lin H, Tam VH, Hu M. Drug Metab Dispos; 2005 Dec; 33(12):1777-84. PubMed ID: 16120792 [Abstract] [Full Text] [Related]
6. Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Wang SW, Chen J, Jia X, Tam VH, Hu M. Drug Metab Dispos; 2006 Nov; 34(11):1837-48. PubMed ID: 16882763 [Abstract] [Full Text] [Related]
7. Variable isoflavone content of red clover products affects intestinal disposition of biochanin A, formononetin, genistein, and daidzein. Wang SW, Chen Y, Joseph T, Hu M. J Altern Complement Med; 2008 Apr; 14(3):287-97. PubMed ID: 18370585 [Abstract] [Full Text] [Related]
8. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. Hu M, Chen J, Lin H. J Pharmacol Exp Ther; 2003 Oct; 307(1):314-21. PubMed ID: 12893842 [Abstract] [Full Text] [Related]
9. The intracellular metabolism of isoflavones in endothelial cells. Toro-Funes N, Morales-Gutiérrez FJ, Veciana-Nogués MT, Vidal-Carou MC, Spencer JP, Rodriguez-Mateos A. Food Funct; 2015 Jan; 6(1):98-108. PubMed ID: 25410768 [Abstract] [Full Text] [Related]
10. Transport of genistein-7-glucoside by human intestinal CACO-2 cells: potential role for MRP2. Walle UK, French KL, Walgren RA, Walle T. Res Commun Mol Pathol Pharmacol; 1999 Jan; 103(1):45-56. PubMed ID: 10440570 [Abstract] [Full Text] [Related]
11. Metabolism and disposition of isoflavone conjugated metabolites in humans after ingestion of kinako. Hosoda K, Furuta T, Ishii K. Drug Metab Dispos; 2011 Sep; 39(9):1762-7. PubMed ID: 21622628 [Abstract] [Full Text] [Related]
12. Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Hu M, Krausz K, Chen J, Ge X, Li J, Gelboin HL, Gonzalez FJ. Drug Metab Dispos; 2003 Jul; 31(7):924-31. PubMed ID: 12814970 [Abstract] [Full Text] [Related]
13. Transport mechanisms for soy isoflavones and microbial metabolites dihydrogenistein and dihydrodaidzein across monolayers and membranes. Kobayashi S, Shinohara M, Nagai T, Konishi Y. Biosci Biotechnol Biochem; 2013 Jul; 77(11):2210-7. PubMed ID: 24200780 [Abstract] [Full Text] [Related]
14. Sulfation of the isoflavones genistein and daidzein in human and rat liver and gastrointestinal tract. Ronis MJ, Little JM, Barone GW, Chen G, Radominska-Pandya A, Badger TM. J Med Food; 2006 Jul; 9(3):348-55. PubMed ID: 17004897 [Abstract] [Full Text] [Related]
15. The effect of oestrogen and dietary phyto-oestrogens on transepithelial calcium transport in human intestinal-like Caco-2 cells. Cotter AA, Jewell C, Cashman KD. Br J Nutr; 2003 Jun; 89(6):755-65. PubMed ID: 12828792 [Abstract] [Full Text] [Related]
16. Plasma profiling of intact isoflavone metabolites by high-performance liquid chromatography and mass spectrometric identification of flavone glycosides daidzin and genistin in human plasma after administration of kinako. Hosoda K, Furuta T, Yokokawa A, Ogura K, Hiratsuka A, Ishii K. Drug Metab Dispos; 2008 Aug; 36(8):1485-95. PubMed ID: 18443032 [Abstract] [Full Text] [Related]
17. Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides. Steensma A, Noteborn HP, Kuiper HA. Environ Toxicol Pharmacol; 2004 Apr; 16(3):131-9. PubMed ID: 21782699 [Abstract] [Full Text] [Related]
19. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. Rüfer CE, Kulling SE. J Agric Food Chem; 2006 Apr 19; 54(8):2926-31. PubMed ID: 16608210 [Abstract] [Full Text] [Related]
20. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Liu W, Feng Q, Li Y, Ye L, Hu M, Liu Z. Toxicol Appl Pharmacol; 2012 Dec 15; 265(3):316-24. PubMed ID: 22982073 [Abstract] [Full Text] [Related] Page: [Next] [New Search]