These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


335 related items for PubMed ID: 15460039

  • 21. Presynaptic glutamate receptors: physiological functions and mechanisms of action.
    Pinheiro PS, Mulle C.
    Nat Rev Neurosci; 2008 Jun; 9(6):423-36. PubMed ID: 18464791
    [Abstract] [Full Text] [Related]

  • 22. Ca2+-dependent mechanisms of presynaptic control at central synapses.
    Rusakov DA.
    Neuroscientist; 2006 Aug; 12(4):317-26. PubMed ID: 16840708
    [Abstract] [Full Text] [Related]

  • 23. Presynaptic disruption of transmitter release by lead.
    Suszkiw JB.
    Neurotoxicology; 2004 Jun; 25(4):599-604. PubMed ID: 15183013
    [Abstract] [Full Text] [Related]

  • 24. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats.
    Hige T, Fujiyoshi Y, Takahashi T.
    Eur J Neurosci; 2006 Oct; 24(7):1955-66. PubMed ID: 17040476
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Presynaptic signal transduction pathways that modulate synaptic transmission.
    de Jong AP, Verhage M.
    Curr Opin Neurobiol; 2009 Jun; 19(3):245-53. PubMed ID: 19559598
    [Abstract] [Full Text] [Related]

  • 27. Presynaptic Ca2+ channels--integration centers for neuronal signaling pathways.
    Evans RM, Zamponi GW.
    Trends Neurosci; 2006 Nov; 29(11):617-24. PubMed ID: 16942804
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.
    Khanna R, Li Q, Sun L, Collins TJ, Stanley EF.
    Neuroscience; 2006 Jul 21; 140(4):1201-8. PubMed ID: 16757118
    [Abstract] [Full Text] [Related]

  • 30. Developmental consequences of neuromuscular junctions with reduced presynaptic calcium channel function.
    Xing B, Ashleigh Long A, Harrison DA, Cooper RL.
    Synapse; 2005 Sep 01; 57(3):132-47. PubMed ID: 15945059
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Calcium mobilization from mitochondria in synaptic transmitter release.
    Rizzuto R.
    J Cell Biol; 2003 Nov 10; 163(3):441-3. PubMed ID: 14610050
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.
    Miyazaki K, Ishizuka T, Yawo H.
    Neuroscience; 2005 Nov 10; 136(4):1003-14. PubMed ID: 16226383
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.