These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1004 related items for PubMed ID: 15464825

  • 1. Solubilization of negatively charged DPPC/DPPG liposomes by bile salts.
    Hildebrand A, Beyer K, Neubert R, Garidel P, Blume A.
    J Colloid Interface Sci; 2004 Nov 15; 279(2):559-71. PubMed ID: 15464825
    [Abstract] [Full Text] [Related]

  • 2. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M, Schwieger C, Meister A, Karlsson G, Blume A.
    Biophys Chem; 2009 Sep 15; 144(1-2):27-37. PubMed ID: 19560854
    [Abstract] [Full Text] [Related]

  • 3. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A, Dathe M, Blume A.
    Biophys Chem; 2013 Sep 15; 180-181():10-21. PubMed ID: 23792704
    [Abstract] [Full Text] [Related]

  • 4. Photophysical behavior of 8-anilino-1-naphthalenesulfonate in vesicles of pulmonary surfactant dipalmitoylphosphatidylcholine (DPPC) and its sensitivity toward the bile salt-vesicle interaction.
    Mohapatra M, Mishra AK.
    Langmuir; 2013 Sep 10; 29(36):11396-404. PubMed ID: 23930911
    [Abstract] [Full Text] [Related]

  • 5. Membranolytic activity of bile salts: influence of biological membrane properties and composition.
    Garidel P, Hildebrand A, Knauf K, Blume A.
    Molecules; 2007 Oct 23; 12(10):2292-326. PubMed ID: 17978759
    [Abstract] [Full Text] [Related]

  • 6. 1-Naphthol as a sensitive fluorescent molecular probe for monitoring the interaction of submicellar concentration of bile salt with a bilayer membrane of DPPC, a lung surfactant.
    Mohapatra M, Mishra AK.
    J Phys Chem B; 2010 Nov 25; 114(46):14934-40. PubMed ID: 21038898
    [Abstract] [Full Text] [Related]

  • 7. Solubilisation of dipalmitoylphosphatidylcholine bilayers by sodium taurocholate: a model to study the stability of liposomes in the gastrointestinal tract and their mechanism of interaction with a model bile salt.
    Andrieux K, Forte L, Lesieur S, Paternostre M, Ollivon M, Grabielle-Madelmont C.
    Eur J Pharm Biopharm; 2009 Feb 25; 71(2):346-55. PubMed ID: 18835441
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B, Arab-Tehrany E, Kheirolomoom A, Geny D, Linder M.
    Biochimie; 2013 Nov 25; 95(11):2018-33. PubMed ID: 23871914
    [Abstract] [Full Text] [Related]

  • 10. Interaction of the meso-tetrakis (4-N-methylpyridyl) porphyrin with gel and liquid state phospholipid vesicles.
    de Sousa Neto D, Tabak M.
    J Colloid Interface Sci; 2012 Sep 01; 381(1):73-82. PubMed ID: 22727597
    [Abstract] [Full Text] [Related]

  • 11. Mixed DPPC/DPPG monolayers at very high film compression.
    Saad SM, Policova Z, Acosta EJ, Hair ML, Neumann AW.
    Langmuir; 2009 Sep 15; 25(18):10907-12. PubMed ID: 19507830
    [Abstract] [Full Text] [Related]

  • 12. The cyclic antimicrobial peptide RTD-1 induces stabilized lipid-peptide domains more efficiently than its open-chain analogue.
    Abuja PM, Zenz A, Trabi M, Craik DJ, Lohner K.
    FEBS Lett; 2004 May 21; 566(1-3):301-6. PubMed ID: 15147913
    [Abstract] [Full Text] [Related]

  • 13. Study on interaction of bile salts with curcumin and curcumin embedded in dipalmitoyl-sn-glycero-3-phosphocholine liposome.
    Patra D, Ahmadieh D, Aridi R.
    Colloids Surf B Biointerfaces; 2013 Oct 01; 110():296-304. PubMed ID: 23732808
    [Abstract] [Full Text] [Related]

  • 14. Fluorescence (fluidity/hydration) and calorimetric studies of interactions of bile acid-drug conjugates with model membranes.
    Sreekanth V, Bajaj A.
    J Phys Chem B; 2013 Feb 21; 117(7):2123-33. PubMed ID: 23383746
    [Abstract] [Full Text] [Related]

  • 15. Tumor targeting in vivo by means of thermolabile fusogenic liposomes.
    Zellmer S, Cevc G.
    J Drug Target; 1996 Feb 21; 4(1):19-29. PubMed ID: 8798875
    [Abstract] [Full Text] [Related]

  • 16. The effect of sodium cholate aggregates on thermoreversible gelation of PNIPAM.
    Kumar AC, Bohidar HB, Mishra AK.
    Colloids Surf B Biointerfaces; 2009 Apr 01; 70(1):60-7. PubMed ID: 19153035
    [Abstract] [Full Text] [Related]

  • 17. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies.
    Schwieger C, Blume A.
    Biomacromolecules; 2009 Aug 10; 10(8):2152-61. PubMed ID: 19603784
    [Abstract] [Full Text] [Related]

  • 18. Interaction of antimicrobial arginine-based cationic surfactants with liposomes and lipid monolayers.
    Castillo JA, Pinazo A, Carilla J, Infante MR, Alsina MA, Haro I, Clapés P.
    Langmuir; 2004 Apr 13; 20(8):3379-87. PubMed ID: 15875872
    [Abstract] [Full Text] [Related]

  • 19. Effect of glycolipids on the phase behavior and dynamic properties of phospholipid liposomes.
    Chen JW, Shi K, Zhang L, Huang F.
    Biochem Biophys Res Commun; 1992 Aug 14; 186(3):1294-8. PubMed ID: 1510663
    [Abstract] [Full Text] [Related]

  • 20. Interaction of phospholipid dispersions with water-soluble porphyrins as monitored by their Raman temperature profiles.
    Procházka M, Stĕpánek J, Turpin PY.
    Chem Phys Lipids; 2004 Dec 14; 132(2):145-56. PubMed ID: 15555601
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 51.