These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 15466698

  • 1. Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation.
    Hayashi T, Su TP.
    Proc Natl Acad Sci U S A; 2004 Oct 12; 101(41):14949-54. PubMed ID: 15466698
    [Abstract] [Full Text] [Related]

  • 2. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction.
    Hayashi T, Fujimoto M.
    Mol Pharmacol; 2010 Apr 12; 77(4):517-28. PubMed ID: 20053954
    [Abstract] [Full Text] [Related]

  • 3. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export.
    Hayashi T, Su TP.
    J Pharmacol Exp Ther; 2003 Aug 12; 306(2):718-25. PubMed ID: 12730355
    [Abstract] [Full Text] [Related]

  • 4. Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway.
    Tsai SY, Hayashi T, Harvey BK, Wang Y, Wu WW, Shen RF, Zhang Y, Becker KG, Hoffer BJ, Su TP.
    Proc Natl Acad Sci U S A; 2009 Dec 29; 106(52):22468-73. PubMed ID: 20018732
    [Abstract] [Full Text] [Related]

  • 5. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB.
    Meunier J, Hayashi T.
    J Pharmacol Exp Ther; 2010 Feb 29; 332(2):388-97. PubMed ID: 19855099
    [Abstract] [Full Text] [Related]

  • 6. The sigma-1 receptor: roles in neuronal plasticity and disease.
    Kourrich S, Su TP, Fujimoto M, Bonci A.
    Trends Neurosci; 2012 Dec 29; 35(12):762-71. PubMed ID: 23102998
    [Abstract] [Full Text] [Related]

  • 7. Protein kinase A activation down-regulates, whereas extracellular signal-regulated kinase activation up-regulates sigma-1 receptors in B-104 cells: Implication for neuroplasticity.
    Cormaci G, Mori T, Hayashi T, Su TP.
    J Pharmacol Exp Ther; 2007 Jan 29; 320(1):202-10. PubMed ID: 17050780
    [Abstract] [Full Text] [Related]

  • 8. The lifetime of UDP-galactose:ceramide galactosyltransferase is controlled by a distinct endoplasmic reticulum-associated degradation (ERAD) regulated by sigma-1 receptor chaperones.
    Hayashi T, Hayashi E, Fujimoto M, Sprong H, Su TP.
    J Biol Chem; 2012 Dec 14; 287(51):43156-69. PubMed ID: 23105111
    [Abstract] [Full Text] [Related]

  • 9. Sigma-1Rs are upregulated via PERK/eIF2α/ATF4 pathway and execute protective function in ER stress.
    Mitsuda T, Omi T, Tanimukai H, Sakagami Y, Tagami S, Okochi M, Kudo T, Takeda M.
    Biochem Biophys Res Commun; 2011 Nov 25; 415(3):519-25. PubMed ID: 22079628
    [Abstract] [Full Text] [Related]

  • 10. Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor.
    Fujimoto M, Hayashi T, Urfer R, Mita S, Su TP.
    Synapse; 2012 Jul 25; 66(7):630-9. PubMed ID: 22337473
    [Abstract] [Full Text] [Related]

  • 11. The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse.
    Hayashi T, Su TP.
    Life Sci; 2005 Aug 19; 77(14):1612-24. PubMed ID: 16002098
    [Abstract] [Full Text] [Related]

  • 12. Sigma-1 receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution.
    Takebayashi M, Hayashi T, Su TP.
    Synapse; 2004 Aug 19; 53(2):90-103. PubMed ID: 15170821
    [Abstract] [Full Text] [Related]

  • 13. Intracellular dynamics of sigma-1 receptors (sigma(1) binding sites) in NG108-15 cells.
    Hayashi T, Su TP.
    J Pharmacol Exp Ther; 2003 Aug 19; 306(2):726-33. PubMed ID: 12730356
    [Abstract] [Full Text] [Related]

  • 14. The sigma-1 receptor chaperone as an inter-organelle signaling modulator.
    Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE.
    Trends Pharmacol Sci; 2010 Dec 19; 31(12):557-66. PubMed ID: 20869780
    [Abstract] [Full Text] [Related]

  • 15. CLN3p impacts galactosylceramide transport, raft morphology, and lipid content.
    Rusyn E, Mousallem T, Persaud-Sawin DA, Miller S, Boustany RM.
    Pediatr Res; 2008 Jun 19; 63(6):625-31. PubMed ID: 18317235
    [Abstract] [Full Text] [Related]

  • 16. Compromising σ-1 receptors at the endoplasmic reticulum render cytotoxicity to physiologically relevant concentrations of dopamine in a nuclear factor-κB/Bcl-2-dependent mechanism: potential relevance to Parkinson's disease.
    Mori T, Hayashi T, Su TP.
    J Pharmacol Exp Ther; 2012 Jun 19; 341(3):663-71. PubMed ID: 22399814
    [Abstract] [Full Text] [Related]

  • 17. The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration.
    Ruscher K, Wieloch T.
    J Pharmacol Sci; 2015 Jan 19; 127(1):30-5. PubMed ID: 25704015
    [Abstract] [Full Text] [Related]

  • 18. Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes.
    Gebreselassie D, Bowen WD.
    Eur J Pharmacol; 2004 Jun 16; 493(1-3):19-28. PubMed ID: 15189760
    [Abstract] [Full Text] [Related]

  • 19. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide.
    Hall A, Róg T, Karttunen M, Vattulainen I.
    J Phys Chem B; 2010 Jun 17; 114(23):7797-807. PubMed ID: 20496924
    [Abstract] [Full Text] [Related]

  • 20. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival.
    Hayashi T, Su TP.
    Cell; 2007 Nov 02; 131(3):596-610. PubMed ID: 17981125
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.