These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


458 related items for PubMed ID: 15468223

  • 1. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s.
    Kunioka M.
    Macromol Biosci; 2004 Mar 15; 4(3):324-9. PubMed ID: 15468223
    [Abstract] [Full Text] [Related]

  • 2. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels.
    Hua J, Li Z, Xia W, Yang N, Gong J, Zhang J, Qiao C.
    Mater Sci Eng C Mater Biol Appl; 2016 Apr 01; 61():879-92. PubMed ID: 26838920
    [Abstract] [Full Text] [Related]

  • 3. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T, Watanabe K, Kim H, Akashi M.
    Langmuir; 2010 Feb 16; 26(4):2406-13. PubMed ID: 20017513
    [Abstract] [Full Text] [Related]

  • 4. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z, Zhang Y, Markland P, Yang VC.
    J Biomed Mater Res; 2002 Oct 16; 62(1):14-21. PubMed ID: 12124782
    [Abstract] [Full Text] [Related]

  • 5. Novel functional biodegradable polymer. III. The construction of poly(gamma-glutamic acid)-sulfonate hydrogel with fibroblast growth factor-2 activity.
    Matsusaki M, Serizawa T, Kishida A, Akashi M.
    J Biomed Mater Res A; 2005 Jun 15; 73(4):485-91. PubMed ID: 15900608
    [Abstract] [Full Text] [Related]

  • 6. New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid.
    Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, Lim YT, Choi YK, Bae SR, Uyama H, Kim CJ, Sung MH.
    Chem Biodivers; 2010 Jun 15; 7(6):1555-62. PubMed ID: 20564573
    [Abstract] [Full Text] [Related]

  • 7. Unusual salt stability in highly charged diblock co-polypeptide hydrogels.
    Nowak AP, Breedveld V, Pine DJ, Deming TJ.
    J Am Chem Soc; 2003 Dec 17; 125(50):15666-70. PubMed ID: 14664616
    [Abstract] [Full Text] [Related]

  • 8. Bio-based hydrogels prepared by cross-linking of microbial poly(gamma-glutamic acid) with various saccharides.
    Murakami S, Aoki N.
    Biomacromolecules; 2006 Jul 17; 7(7):2122-7. PubMed ID: 16827578
    [Abstract] [Full Text] [Related]

  • 9. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel.
    Tsao CT, Chang CH, Lin YY, Wu MF, Wang JL, Han JL, Hsieh KH.
    Carbohydr Res; 2010 Aug 16; 345(12):1774-80. PubMed ID: 20598293
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Isolation of an Acremonium sp. capable of liquefying cross-linked poly(gamma-glutamic acid) hydrogels and the fungal enzyme involved in the disruption of gamma-ray irradiation-mediated cross-linking.
    Matsui O, Fujita K, Nakayama H, Taniguchi M, Tarui Y, Hirasawa E, Usuki Y, Tanaka T.
    J Biosci Bioeng; 2008 Apr 16; 105(4):422-4. PubMed ID: 18499062
    [Abstract] [Full Text] [Related]

  • 12. Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly(ethylene glycol).
    Chao GT, Qian ZY, Huang MJ, Kan B, Gu YC, Gong CY, Yang JL, Wang K, Dai M, Li XY, Gou ML, Tu MJ, Wei YQ.
    J Biomed Mater Res A; 2008 Apr 16; 85(1):36-46. PubMed ID: 17688254
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(gamma-glutamic acid)-sulfonate matrix for tissue engineering.
    Matsusaki M, Akashi M.
    Biomacromolecules; 2005 Apr 16; 6(6):3351-6. PubMed ID: 16283765
    [Abstract] [Full Text] [Related]

  • 15. Layered hydrogel of poly(γ-glutamic acid), sodium alginate, and chitosan: fluorescence observation of structure and cytocompatibility.
    Lee YH, Chang JJ, Lai WF, Yang MC, Chien CT.
    Colloids Surf B Biointerfaces; 2011 Sep 01; 86(2):409-13. PubMed ID: 21561745
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Novel Biological Hydrogel: Swelling Behaviors Study in Salt Solutions with Different Ionic Valence Number.
    Wang Y, He G, Li Z, Hua J, Wu M, Gong J, Zhang J, Ban LT, Huang L.
    Polymers (Basel); 2018 Jan 24; 10(2):. PubMed ID: 30966148
    [Abstract] [Full Text] [Related]

  • 18. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers.
    Akagi T, Higashi M, Kaneko T, Kida T, Akashi M.
    Biomacromolecules; 2006 Jan 24; 7(1):297-303. PubMed ID: 16398528
    [Abstract] [Full Text] [Related]

  • 19. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid).
    Akagi T, Higashi M, Kaneko T, Kida T, Akashi M.
    Macromol Biosci; 2005 Jul 14; 5(7):598-602. PubMed ID: 15991216
    [Abstract] [Full Text] [Related]

  • 20. Effects of cultivation conditions on the production of gamma-PGA with Bacillus subtilis ZJU-7.
    Chen J, Shi F, Zhang B, Zhu F, Cao W, Xu Z, Xu G, Cen P.
    Appl Biochem Biotechnol; 2010 Jan 14; 160(2):370-7. PubMed ID: 18668374
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.