These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 15476257

  • 21. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C, Pollastri G.
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [Abstract] [Full Text] [Related]

  • 22. Prediction of protein structure by emphasizing local side-chain/backbone interactions in ensembles of turn fragments.
    Fang Q, Shortle D.
    Proteins; 2003 Oct; 53 Suppl 6():486-90. PubMed ID: 14579337
    [Abstract] [Full Text] [Related]

  • 23. A simple physical model for the prediction and design of protein-DNA interactions.
    Havranek JJ, Duarte CM, Baker D.
    J Mol Biol; 2004 Nov 12; 344(1):59-70. PubMed ID: 15504402
    [Abstract] [Full Text] [Related]

  • 24. Enhanced sampling near the native conformation using statistical potentials for local side-chain and backbone interactions.
    Fang Q, Shortle D.
    Proteins; 2005 Jul 01; 60(1):97-102. PubMed ID: 15852306
    [Abstract] [Full Text] [Related]

  • 25. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.
    Tan YH, Huang H, Kihara D.
    Proteins; 2006 Aug 15; 64(3):587-600. PubMed ID: 16799934
    [Abstract] [Full Text] [Related]

  • 26. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence.
    Pahlke D, Freund C, Leitner D, Labudde D.
    BMC Struct Biol; 2005 Apr 01; 5():8. PubMed ID: 15804350
    [Abstract] [Full Text] [Related]

  • 27. Interresidue contacts in proteins and protein-protein interfaces and their use in characterizing the homodimeric interface.
    Saha RP, Bahadur RP, Chakrabarti P.
    J Proteome Res; 2005 Apr 01; 4(5):1600-9. PubMed ID: 16212412
    [Abstract] [Full Text] [Related]

  • 28. Recognition of coarse-grained protein tertiary structure.
    Lezon T, Banavar JR, Maritan A.
    Proteins; 2004 May 15; 55(3):536-47. PubMed ID: 15103618
    [Abstract] [Full Text] [Related]

  • 29. Protein-RNA interactions: structural analysis and functional classes.
    Ellis JJ, Broom M, Jones S.
    Proteins; 2007 Mar 01; 66(4):903-11. PubMed ID: 17186525
    [Abstract] [Full Text] [Related]

  • 30. A consistent set of statistical potentials for quantifying local side-chain and backbone interactions.
    Fang Q, Shortle D.
    Proteins; 2005 Jul 01; 60(1):90-6. PubMed ID: 15852305
    [Abstract] [Full Text] [Related]

  • 31. Information-theoretic dissection of pairwise contact potentials.
    Cline MS, Karplus K, Lathrop RH, Smith TF, Rogers RG, Haussler D.
    Proteins; 2002 Oct 01; 49(1):7-14. PubMed ID: 12211011
    [Abstract] [Full Text] [Related]

  • 32. A method for protein accessibility prediction based on residue types and conformational states.
    Zarei R, Arab S, Sadeghi M.
    Comput Biol Chem; 2007 Oct 01; 31(5-6):384-8. PubMed ID: 17888743
    [Abstract] [Full Text] [Related]

  • 33. Multiple contact network is a key determinant to protein folding rates.
    Gromiha MM.
    J Chem Inf Model; 2009 Apr 01; 49(4):1130-5. PubMed ID: 19338373
    [Abstract] [Full Text] [Related]

  • 34. Predicting functionally important residues from sequence conservation.
    Capra JA, Singh M.
    Bioinformatics; 2007 Aug 01; 23(15):1875-82. PubMed ID: 17519246
    [Abstract] [Full Text] [Related]

  • 35. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S.
    Acc Chem Res; 2008 Oct 01; 41(10):1301-8. PubMed ID: 18642934
    [Abstract] [Full Text] [Related]

  • 36. [Analysis of the spatial structure of proteins in terms of residue-residue contacts. II. Contact affinity].
    Rodionov MA, Gurevich AV, Galaktionov SG.
    Mol Biol (Mosk); 1993 Oct 01; 27(2):363-70. PubMed ID: 8487768
    [Abstract] [Full Text] [Related]

  • 37. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M, Yanover C.
    Proteins; 2009 May 15; 75(3):682-705. PubMed ID: 19003998
    [Abstract] [Full Text] [Related]

  • 38. Sequence-based protein structure prediction using a reduced state-space hidden Markov model.
    Lampros C, Costas Papaloukas, Exarchos TP, Yorgos Goletsis, Fotiadis DI.
    Comput Biol Med; 2007 Sep 15; 37(9):1211-24. PubMed ID: 17161834
    [Abstract] [Full Text] [Related]

  • 39. Potential implications of availability of short amino acid sequences in proteins: an old and new approach to protein decoding and design.
    Otaki JM, Gotoh T, Yamamoto H.
    Biotechnol Annu Rev; 2008 Sep 15; 14():109-41. PubMed ID: 18606361
    [Abstract] [Full Text] [Related]

  • 40. Accuracy of sequence alignment and fold assessment using reduced amino acid alphabets.
    Melo F, Marti-Renom MA.
    Proteins; 2006 Jun 01; 63(4):986-95. PubMed ID: 16506243
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.