These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 15476414

  • 1. Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase.
    Leemhuis H, Wehmeier UF, Dijkhuizen L.
    Biochemistry; 2004 Oct 19; 43(41):13204-13. PubMed ID: 15476414
    [Abstract] [Full Text] [Related]

  • 2. Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50.
    Hemker M, Stratmann A, Goeke K, Schröder W, Lenz J, Piepersberg W, Pape H.
    J Bacteriol; 2001 Aug 19; 183(15):4484-92. PubMed ID: 11443082
    [Abstract] [Full Text] [Related]

  • 3. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production.
    van der Veen BA, Uitdehaag JC, Penninga D, van Alebeek GJ, Smith LM, Dijkstra BW, Dijkhuizen L.
    J Mol Biol; 2000 Mar 03; 296(4):1027-38. PubMed ID: 10686101
    [Abstract] [Full Text] [Related]

  • 4. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1.
    Leemhuis H, Rozeboom HJ, Wilbrink M, Euverink GJ, Dijkstra BW, Dijkhuizen L.
    Biochemistry; 2003 Jun 24; 42(24):7518-26. PubMed ID: 12809508
    [Abstract] [Full Text] [Related]

  • 5. Conversion of a cyclodextrin glucanotransferase into an alpha-amylase: assessment of directed evolution strategies.
    Kelly RM, Leemhuis H, Dijkhuizen L.
    Biochemistry; 2007 Oct 02; 46(39):11216-22. PubMed ID: 17824673
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of the replacement on pH dependence and transition-state stabilization.
    Nakamura A, Haga K, Yamane K.
    Biochemistry; 1993 Jul 06; 32(26):6624-31. PubMed ID: 8329389
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mutations at subsite -3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing alpha-cyclodextrin specificity.
    Li Z, Zhang J, Wang M, Gu Z, Du G, Li J, Wu J, Chen J.
    Appl Microbiol Biotechnol; 2009 Jun 06; 83(3):483-90. PubMed ID: 19190904
    [Abstract] [Full Text] [Related]

  • 12. Site-directed mutations in Alanine 223 and Glycine 255 in the acceptor site of gamma-Cyclodextrin glucanotransferase from Alkalophilic Bacillus clarkii 7364 affect cyclodextrin production.
    Nakagawa Y, Takada M, Ogawa K, Hatada Y, Horikoshi K.
    J Biochem; 2006 Sep 06; 140(3):329-36. PubMed ID: 16861250
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Three trehalose synthetic pathways in the acarbose-producing Actinoplanes sp. SN223/29 and evidence for the TreY role in biosynthesis of component C.
    Lee JS, Hai T, Pape H, Kim TJ, Suh JW.
    Appl Microbiol Biotechnol; 2008 Oct 06; 80(5):767-78. PubMed ID: 18663442
    [Abstract] [Full Text] [Related]

  • 15. Molecular cloning and characterization of a novel gamma-CGTase from alkalophilic Bacillus sp.
    Hirano K, Ishihara T, Ogasawara S, Maeda H, Abe K, Nakajima T, Yamagata Y.
    Appl Microbiol Biotechnol; 2006 Mar 06; 70(2):193-201. PubMed ID: 16012834
    [Abstract] [Full Text] [Related]

  • 16. Trapping and characterization of the reaction intermediate in cyclodextrin glycosyltransferase by use of activated substrates and a mutant enzyme.
    Mosi R, He S, Uitdehaag J, Dijkstra BW, Withers SG.
    Biochemistry; 1997 Aug 12; 36(32):9927-34. PubMed ID: 9245426
    [Abstract] [Full Text] [Related]

  • 17. Structural basis of a mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to β-/γ-cyclodextrin.
    Xie T, Hou Y, Li D, Yue Y, Qian S, Chao Y.
    J Biotechnol; 2014 Jul 20; 182-183():92-6. PubMed ID: 24637377
    [Abstract] [Full Text] [Related]

  • 18. Mutations of Lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhance beta-cyclodextrin specificity.
    Li ZF, Zhang JY, Sun Q, Wang M, Gu ZB, Du GC, Wu J, Chen J.
    J Agric Food Chem; 2009 Sep 23; 57(18):8386-91. PubMed ID: 19715296
    [Abstract] [Full Text] [Related]

  • 19. The residue 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase.
    Costa H, Distéfano AJ, Marino-Buslje C, Hidalgo A, Berenguer J, Biscoglio de Jiménez Bonino M, Ferrarotti SA.
    Appl Microbiol Biotechnol; 2012 Apr 23; 94(1):123-30. PubMed ID: 21993482
    [Abstract] [Full Text] [Related]

  • 20. Isolation and characterization of a novel intracellular glucosyltransferase from the acarbose producer Actinoplanes sp. CKD485-16.
    Choi BT, Shin CS.
    Appl Microbiol Biotechnol; 2004 Aug 23; 65(3):273-80. PubMed ID: 15257419
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.