These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


325 related items for PubMed ID: 15479081

  • 41. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease.
    Pierce AC, Rao G, Bemis GW.
    J Med Chem; 2004 May 20; 47(11):2768-75. PubMed ID: 15139755
    [Abstract] [Full Text] [Related]

  • 42. Active site binding modes of curcumin in HIV-1 protease and integrase.
    Vajragupta O, Boonchoong P, Morris GM, Olson AJ.
    Bioorg Med Chem Lett; 2005 Jul 15; 15(14):3364-8. PubMed ID: 15950462
    [Abstract] [Full Text] [Related]

  • 43. Targeting dynamic pockets of HIV-1 protease by structure-based computational screening for allosteric inhibitors.
    Kunze J, Todoroff N, Schneider P, Rodrigues T, Geppert T, Reisen F, Schreuder H, Saas J, Hessler G, Baringhaus KH, Schneider G.
    J Chem Inf Model; 2014 Mar 24; 54(3):987-91. PubMed ID: 24528206
    [Abstract] [Full Text] [Related]

  • 44. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC, Langley DR, Kang J, Huang H, Kulkarni A.
    J Chem Inf Model; 2009 Jul 24; 49(7):1797-809. PubMed ID: 19552372
    [Abstract] [Full Text] [Related]

  • 45. Ligand design package (Ludi--MSI) applied to known inhibitors of the HIV-1 protease. Test of performance.
    Bogacewicz R, Trylska J, Geller M.
    Acta Pol Pharm; 2000 Nov 24; 57 Suppl():25-8. PubMed ID: 11293255
    [Abstract] [Full Text] [Related]

  • 46. Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands.
    Ali A, Reddy GS, Cao H, Anjum SG, Nalam MN, Schiffer CA, Rana TM.
    J Med Chem; 2006 Dec 14; 49(25):7342-56. PubMed ID: 17149864
    [Abstract] [Full Text] [Related]

  • 47. Receptor flexibility in de novo ligand design and docking.
    Alberts IL, Todorov NP, Dean PM.
    J Med Chem; 2005 Oct 20; 48(21):6585-96. PubMed ID: 16220975
    [Abstract] [Full Text] [Related]

  • 48. Comparing the conformational behavior of a series of diastereomeric cyclic urea HIV-1 inhibitors using the low mode:monte carlo conformational search method.
    Parish CA, Yarger M, Sinclair K, Dure M, Goldberg A.
    J Med Chem; 2004 Sep 23; 47(20):4838-50. PubMed ID: 15369387
    [Abstract] [Full Text] [Related]

  • 49. Design and synthesis of novel HIV-1 protease inhibitors incorporating oxyindoles as the P2'-ligands.
    Ghosh AK, Schiltz G, Perali RS, Leshchenko S, Kay S, Walters DE, Koh Y, Maeda K, Mitsuya H.
    Bioorg Med Chem Lett; 2006 Apr 01; 16(7):1869-73. PubMed ID: 16480871
    [Abstract] [Full Text] [Related]

  • 50. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA, Cukier RI.
    Proteins; 2007 Nov 15; 69(3):551-65. PubMed ID: 17623840
    [Abstract] [Full Text] [Related]

  • 51. Peptidomimetic therapeutic agents targeting the protease enzyme of the human immunodeficiency virus and hepatitis C virus.
    Tsantrizos YS.
    Acc Chem Res; 2008 Oct 15; 41(10):1252-63. PubMed ID: 18681464
    [Abstract] [Full Text] [Related]

  • 52. Design, biologic evaluation, and SAR of novel pseudo-peptide incorporating benzheterocycles as HIV-1 protease inhibitors.
    He M, Zhang H, Yao X, Eckart M, Zuo E, Yang M.
    Chem Biol Drug Des; 2010 Aug 15; 76(2):174-80. PubMed ID: 20572811
    [Abstract] [Full Text] [Related]

  • 53. Structure-based design: synthesis and biological evaluation of a series of novel cycloamide-derived HIV-1 protease inhibitors.
    Ghosh AK, Swanson LM, Cho H, Leshchenko S, Hussain KA, Kay S, Walters DE, Koh Y, Mitsuya H.
    J Med Chem; 2005 May 19; 48(10):3576-85. PubMed ID: 15887965
    [Abstract] [Full Text] [Related]

  • 54. Molecular docking to ensembles of protein structures.
    Knegtel RM, Kuntz ID, Oshiro CM.
    J Mol Biol; 1997 Feb 21; 266(2):424-40. PubMed ID: 9047373
    [Abstract] [Full Text] [Related]

  • 55. Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial peptides.
    Bowman MJ, Chmielewski J.
    Biopolymers; 2002 Feb 21; 66(2):126-33. PubMed ID: 12325162
    [Abstract] [Full Text] [Related]

  • 56. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.
    Frecer V, Burello E, Miertus S.
    Bioorg Med Chem; 2005 Sep 15; 13(18):5492-501. PubMed ID: 16054372
    [Abstract] [Full Text] [Related]

  • 57. Triterpenes as potential dimerization inhibitors of HIV-1 protease.
    Quéré L, Wenger T, Schramm HJ.
    Biochem Biophys Res Commun; 1996 Oct 14; 227(2):484-8. PubMed ID: 8967903
    [Abstract] [Full Text] [Related]

  • 58. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y, Li D, Ji B, Shi X, Gao H.
    J Mol Graph Model; 2010 Sep 14; 29(2):171-7. PubMed ID: 20580296
    [Abstract] [Full Text] [Related]

  • 59. Crystal structure of chemically synthesized HIV-1 protease and a ketomethylene isostere inhibitor based on the p2/NC cleavage site.
    Torbeev VY, Mandal K, Terechko VA, Kent SB.
    Bioorg Med Chem Lett; 2008 Aug 15; 18(16):4554-7. PubMed ID: 18657969
    [Abstract] [Full Text] [Related]

  • 60. Computational titration analysis of a multiprotic HIV-1 protease-ligand complex.
    Spyrakis F, Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE.
    J Am Chem Soc; 2004 Sep 29; 126(38):11764-5. PubMed ID: 15382890
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.