These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
325 related items for PubMed ID: 15479081
61. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I, Sadiq SK, Coveney PV. J Am Chem Soc; 2008 Feb 27; 130(8):2639-48. PubMed ID: 18225901 [Abstract] [Full Text] [Related]
62. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. Wittayanarakul K, Aruksakunwong O, Sompornpisut P, Sanghiran-Lee V, Parasuk V, Pinitglang S, Hannongbua S. J Chem Inf Model; 2005 Feb 27; 45(2):300-8. PubMed ID: 15807491 [Abstract] [Full Text] [Related]
63. A new structural theme in C2-symmetric HIV-1 protease inhibitors: ortho-substituted P1/P1' side chains. Wannberg J, Sabnis YA, Vrang L, Samuelsson B, Karlén A, Hallberg A, Larhed M. Bioorg Med Chem; 2006 Aug 01; 14(15):5303-15. PubMed ID: 16621572 [Abstract] [Full Text] [Related]
64. Adaptive inhibitors of the HIV-1 protease. Ohtaka H, Freire E. Prog Biophys Mol Biol; 2005 Jun 01; 88(2):193-208. PubMed ID: 15572155 [Abstract] [Full Text] [Related]
65. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance. Alcaro S, Artese A, Ceccherini-Silberstein F, Ortuso F, Perno CF, Sing T, Svicher V. J Chem Inf Model; 2009 Jul 01; 49(7):1751-61. PubMed ID: 19537723 [Abstract] [Full Text] [Related]
66. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism. Singh G, Senapati S. Biochemistry; 2008 Oct 07; 47(40):10657-64. PubMed ID: 18785756 [Abstract] [Full Text] [Related]
67. Design, synthesis, and biological evaluation of monopyrrolinone-based HIV-1 protease inhibitors possessing augmented P2' side chains. Smith AB, Charnley AK, Harada H, Beiger JJ, Cantin LD, Kenesky CS, Hirschmann R, Munshi S, Olsen DB, Stahlhut MW, Schleif WA, Kuo LC. Bioorg Med Chem Lett; 2006 Feb 15; 16(4):859-63. PubMed ID: 16298527 [Abstract] [Full Text] [Related]
68. Discovery of potent pyrrolidone-based HIV-1 protease inhibitors with enhanced drug-like properties. Kazmierski WM, Andrews W, Furfine E, Spaltenstein A, Wright L. Bioorg Med Chem Lett; 2004 Nov 15; 14(22):5689-92. PubMed ID: 15482949 [Abstract] [Full Text] [Related]
69. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. Wittayanarakul K, Hannongbua S, Feig M. J Comput Chem; 2008 Apr 15; 29(5):673-85. PubMed ID: 17849388 [Abstract] [Full Text] [Related]
70. Evaluation of triazolamers as active site inhibitors of HIV-1 protease. Jochim AL, Miller SE, Angelo NG, Arora PS. Bioorg Med Chem Lett; 2009 Nov 01; 19(21):6023-6. PubMed ID: 19800230 [Abstract] [Full Text] [Related]
71. From modeling to medicinal chemistry: automatic generation of two-dimensional complex diagrams. Stierand K, Rarey M. ChemMedChem; 2007 Jun 01; 2(6):853-60. PubMed ID: 17436259 [Abstract] [Full Text] [Related]
72. MCSS functionality maps for a flexible protein. Stultz CM, Karplus M. Proteins; 1999 Dec 01; 37(4):512-29. PubMed ID: 10651268 [Abstract] [Full Text] [Related]
73. Exploring the P2 and P3 ligand binding features for hepatitis C virus NS3 protease using some 3D QSAR techniques. Wei HY, Lu CS, Lin TH. J Mol Graph Model; 2008 Apr 01; 26(7):1131-44. PubMed ID: 18024210 [Abstract] [Full Text] [Related]
74. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. Frembgen-Kesner T, Elcock AH. J Mol Biol; 2006 May 26; 359(1):202-14. PubMed ID: 16616932 [Abstract] [Full Text] [Related]
75. Incorporating dynamics in E. coli dihydrofolate reductase enhances structure-based drug discovery. Lerner MG, Bowman AL, Carlson HA. J Chem Inf Model; 2007 May 26; 47(6):2358-65. PubMed ID: 17877338 [Abstract] [Full Text] [Related]
76. Small-sized human immunodeficiency virus type-1 protease inhibitors containing allophenylnorstatine to explore the S2' pocket. Hidaka K, Kimura T, Abdel-Rahman HM, Nguyen JT, McDaniel KF, Kohlbrenner WE, Molla A, Adachi M, Tamada T, Kuroki R, Katsuki N, Tanaka Y, Matsumoto H, Wang J, Hayashi Y, Kempf DJ, Kiso Y. J Med Chem; 2009 Dec 10; 52(23):7604-17. PubMed ID: 19954246 [Abstract] [Full Text] [Related]
77. A semiempirical free energy force field with charge-based desolvation. Huey R, Morris GM, Olson AJ, Goodsell DS. J Comput Chem; 2007 Apr 30; 28(6):1145-52. PubMed ID: 17274016 [Abstract] [Full Text] [Related]
78. Protein flexibility and species specificity in structure-based drug discovery: dihydrofolate reductase as a test system. Bowman AL, Lerner MG, Carlson HA. J Am Chem Soc; 2007 Mar 28; 129(12):3634-40. PubMed ID: 17335207 [Abstract] [Full Text] [Related]