These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


486 related items for PubMed ID: 15487947

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum.
    Levi Hevroni B, Moraïs S, Ben-David Y, Morag E, Bayer EA.
    mBio; 2020 Mar 31; 11(2):. PubMed ID: 32234813
    [Abstract] [Full Text] [Related]

  • 4. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
    Artzi L, Bayer EA, Moraïs S.
    Nat Rev Microbiol; 2017 Feb 31; 15(2):83-95. PubMed ID: 27941816
    [Abstract] [Full Text] [Related]

  • 5. Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity.
    Borne R, Bayer EA, Pagès S, Perret S, Fierobe HP.
    FEBS J; 2013 Nov 31; 280(22):5764-79. PubMed ID: 24033928
    [Abstract] [Full Text] [Related]

  • 6. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin.
    Fierobe HP, Mingardon F, Mechaly A, Bélaïch A, Rincon MT, Pagès S, Lamed R, Tardif C, Bélaïch JP, Bayer EA.
    J Biol Chem; 2005 Apr 22; 280(16):16325-34. PubMed ID: 15705576
    [Abstract] [Full Text] [Related]

  • 7. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors.
    Cameron K, Najmudin S, Alves VD, Bayer EA, Smith SP, Bule P, Waller H, Ferreira LM, Gilbert HJ, Fontes CM.
    J Biol Chem; 2015 May 22; 290(21):13578-90. PubMed ID: 25855788
    [Abstract] [Full Text] [Related]

  • 8. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
    Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N.
    Appl Environ Microbiol; 2015 Jul 22; 81(14):4756-66. PubMed ID: 25956772
    [Abstract] [Full Text] [Related]

  • 9. A dual cohesin-dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome.
    Duarte M, Viegas A, Alves VD, Prates JAM, Ferreira LMA, Najmudin S, Cabrita EJ, Carvalho AL, Fontes CMGA, Bule P.
    J Biol Chem; 2021 Jul 22; 296():100552. PubMed ID: 33744293
    [Abstract] [Full Text] [Related]

  • 10. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L, Muñoz-Gutiérrez I, Bayer EA, Shoham Y, Lamed R, Borovok I.
    Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159788
    [Abstract] [Full Text] [Related]

  • 11. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system.
    Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, Huang Y, Zhou J, Bayer EA.
    BMC Genomics; 2012 May 30; 13():210. PubMed ID: 22646801
    [Abstract] [Full Text] [Related]

  • 12. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of Clostridium thermocellum.
    Barth A, Hendrix J, Fried D, Barak Y, Bayer EA, Lamb DC.
    Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):E11274-E11283. PubMed ID: 30429330
    [Abstract] [Full Text] [Related]

  • 13. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses.
    Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pagès S, de Philip P.
    Proteomics; 2010 Feb 27; 10(3):541-54. PubMed ID: 20013800
    [Abstract] [Full Text] [Related]

  • 14. Indirect ELISA-based approach for comparative measurement of high-affinity cohesin-dockerin interactions.
    Slutzki M, Barak Y, Reshef D, Schueler-Furman O, Lamed R, Bayer EA.
    J Mol Recognit; 2012 Nov 27; 25(11):616-22. PubMed ID: 23108621
    [Abstract] [Full Text] [Related]

  • 15. Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose?
    Ferdinand PH, Borne R, Trotter V, Pagès S, Tardif C, Fierobe HP, Perret S.
    PLoS One; 2013 Nov 27; 8(7):e69360. PubMed ID: 23935995
    [Abstract] [Full Text] [Related]

  • 16. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex.
    Smith SP, Bayer EA.
    Curr Opin Struct Biol; 2013 Oct 27; 23(5):686-94. PubMed ID: 24080387
    [Abstract] [Full Text] [Related]

  • 17. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes.
    Cha J, Matsuoka S, Chan H, Yukawa H, Inui M, Doi RH.
    J Microbiol Biotechnol; 2007 Nov 27; 17(11):1782-8. PubMed ID: 18092461
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Catalytic subunit exchanges in the cellulosomes produced by Ruminiclostridium cellulolyticum suggest unexpected dynamics and adaptability of their enzymatic composition.
    Borne R, Dao Ti MU, Fierobe HP, Vita N, Tardif C, Pagès S.
    FEBS J; 2020 Jun 27; 287(12):2544-2559. PubMed ID: 31769922
    [Abstract] [Full Text] [Related]

  • 20. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum.
    Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM, Fontes CM.
    Biochem J; 2009 Dec 10; 424(3):375-84. PubMed ID: 19758121
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.