These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
302 related items for PubMed ID: 15488276
1. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L. J Microbiol Methods; 2004 Dec; 59(3):327-35. PubMed ID: 15488276 [Abstract] [Full Text] [Related]
2. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. López-Gutiérrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. J Microbiol Methods; 2004 Jun; 57(3):399-407. PubMed ID: 15134887 [Abstract] [Full Text] [Related]
4. Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S. FEMS Microbiol Lett; 2007 May; 270(2):189-94. PubMed ID: 17250758 [Abstract] [Full Text] [Related]
5. Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. Falk S, Liu B, Braker G. Syst Appl Microbiol; 2010 Oct; 33(6):337-47. PubMed ID: 20675088 [Abstract] [Full Text] [Related]
6. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. Wolsing M, Priemé A. FEMS Microbiol Ecol; 2004 May 01; 48(2):261-71. PubMed ID: 19712409 [Abstract] [Full Text] [Related]
7. The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P. Environ Microbiol; 2006 Nov 01; 8(11):2012-21. PubMed ID: 17014499 [Abstract] [Full Text] [Related]
8. Analysis of nitrite reductase (nirK and nirS) genes and cultivation reveal depauperate community of denitrifying bacteria in the Black Sea suboxic zone. Oakley BB, Francis CA, Roberts KJ, Fuchsman CA, Srinivasan S, Staley JT. Environ Microbiol; 2007 Jan 01; 9(1):118-30. PubMed ID: 17227417 [Abstract] [Full Text] [Related]
9. Visualization and direct counting of individual denitrifying bacterial cells in soil by nirK-targeted direct in situ PCR. Ryuda N, Hashimoto T, Ueno D, Inoue K, Someya T. Microbes Environ; 2011 Jan 01; 26(1):74-80. PubMed ID: 21487206 [Abstract] [Full Text] [Related]
10. Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Cantera JJ, Stein LY. Environ Microbiol; 2007 Mar 01; 9(3):765-76. PubMed ID: 17298375 [Abstract] [Full Text] [Related]
11. Identification of denitrifying bacteria diversity in an activated sludge system by using nitrite reductase genes. You SJ. Biotechnol Lett; 2005 Oct 01; 27(19):1477-82. PubMed ID: 16231219 [Abstract] [Full Text] [Related]
12. Detection and diversity of copper containing nitrite reductase genes (nirK) in prokaryotic and fungal communities of agricultural soils. Long A, Song B, Fridey K, Silva A. FEMS Microbiol Ecol; 2015 Feb 01; 91(2):1-9. PubMed ID: 25764542 [Abstract] [Full Text] [Related]
13. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P, Verstraete W, Boon N. Appl Microbiol Biotechnol; 2007 May 01; 75(1):211-21. PubMed ID: 17256118 [Abstract] [Full Text] [Related]
14. Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Casciotti KL, Ward BB. Appl Environ Microbiol; 2001 May 01; 67(5):2213-21. PubMed ID: 11319103 [Abstract] [Full Text] [Related]
15. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Henry S, Bru D, Stres B, Hallet S, Philippot L. Appl Environ Microbiol; 2006 Aug 01; 72(8):5181-9. PubMed ID: 16885263 [Abstract] [Full Text] [Related]
16. Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C. Environ Microbiol; 2010 Apr 01; 12(4):1075-88. PubMed ID: 20132279 [Abstract] [Full Text] [Related]
17. Influence of temperature on the composition and activity of denitrifying soil communities. Braker G, Schwarz J, Conrad R. FEMS Microbiol Ecol; 2010 Jul 01; 73(1):134-48. PubMed ID: 20455938 [Abstract] [Full Text] [Related]
18. Presence of Cu-Type (NirK) and cd1-Type (NirS) Nitrite Reductase Genes in the Denitrifying Bacterium Bradyrhizobium nitroreducens sp. nov. Jang J, Ashida N, Kai A, Isobe K, Nishizawa T, Otsuka S, Yokota A, Senoo K, Ishii S. Microbes Environ; 2018 Sep 29; 33(3):326-331. PubMed ID: 30158366 [Abstract] [Full Text] [Related]
19. Identification and quantification of arsC genes in environmental samples by using real-time PCR. Sun Y, Polishchuk EA, Radoja U, Cullen WR. J Microbiol Methods; 2004 Sep 29; 58(3):335-49. PubMed ID: 15279938 [Abstract] [Full Text] [Related]
20. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. Jones CM, Hallin S. ISME J; 2010 May 29; 4(5):633-41. PubMed ID: 20090785 [Abstract] [Full Text] [Related] Page: [Next] [New Search]