These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


468 related items for PubMed ID: 15489298

  • 1. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S, Fanani ML, Maggio B.
    Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298
    [Abstract] [Full Text] [Related]

  • 2. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers.
    Fanani ML, Härtel S, Oliveira RG, Maggio B.
    Biophys J; 2002 Dec; 83(6):3416-24. PubMed ID: 12496108
    [Abstract] [Full Text] [Related]

  • 3. Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition.
    Fanani ML, De Tullio L, Hartel S, Jara J, Maggio B.
    Biophys J; 2009 Jan; 96(1):67-76. PubMed ID: 18849413
    [Abstract] [Full Text] [Related]

  • 4. The action of sphingomyelinase in lipid monolayers as revealed by microscopic image analysis.
    Fanani ML, Hartel S, Maggio B, De Tullio L, Jara J, Olmos F, Oliveira RG.
    Biochim Biophys Acta; 2010 Jul; 1798(7):1309-23. PubMed ID: 20067759
    [Abstract] [Full Text] [Related]

  • 5. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 6. Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes.
    Chao L, Gast AP, Hatton TA, Jensen KF.
    Langmuir; 2010 Jan 05; 26(1):344-56. PubMed ID: 19863058
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase.
    Ale EC, Maggio B, Fanani ML.
    Biochim Biophys Acta; 2012 Nov 05; 1818(11):2767-76. PubMed ID: 22763279
    [Abstract] [Full Text] [Related]

  • 9. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM, Subramanian M, Kinnunen PK.
    Biochemistry; 1998 Dec 15; 37(50):17562-70. PubMed ID: 9860872
    [Abstract] [Full Text] [Related]

  • 10. Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers.
    De Tullio L, Maggio B, Fanani ML.
    J Lipid Res; 2008 Nov 15; 49(11):2347-55. PubMed ID: 18509194
    [Abstract] [Full Text] [Related]

  • 11. Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E.
    Morita SY, Nakano M, Sakurai A, Deharu Y, Vertut-Doï A, Handa T.
    FEBS Lett; 2005 Mar 14; 579(7):1759-64. PubMed ID: 15757672
    [Abstract] [Full Text] [Related]

  • 12. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC, Futerman AH, Prieto M.
    Biophys J; 2009 Apr 22; 96(8):3210-22. PubMed ID: 19383465
    [Abstract] [Full Text] [Related]

  • 13. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.
    Jiménez-Rojo N, García-Arribas AB, Sot J, Alonso A, Goñi FM.
    Biochim Biophys Acta; 2014 Jan 22; 1838(1 Pt B):456-64. PubMed ID: 24144542
    [Abstract] [Full Text] [Related]

  • 14. Tunable nucleation time of functional sphingomyelinase--lipid features studied by membrane array statistic tool.
    Lin CY, Chao L.
    Langmuir; 2013 Oct 22; 29(42):13008-17. PubMed ID: 24059643
    [Abstract] [Full Text] [Related]

  • 15. Hemolysis induced by Bacillus cereus sphingomyelinase.
    Oda M, Takahashi M, Matsuno T, Uoo K, Nagahama M, Sakurai J.
    Biochim Biophys Acta; 2010 Jun 22; 1798(6):1073-80. PubMed ID: 20214877
    [Abstract] [Full Text] [Related]

  • 16. Lipid domain morphologies in phosphatidylcholine-ceramide monolayers.
    Karttunen M, Haataja MP, Säily M, Vattulainen I, Holopainen JM.
    Langmuir; 2009 Apr 21; 25(8):4595-600. PubMed ID: 19249826
    [Abstract] [Full Text] [Related]

  • 17. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide.
    Taniguchi Y, Ohba T, Miyata H, Ohki K.
    Biochim Biophys Acta; 2006 Feb 21; 1758(2):145-53. PubMed ID: 16580624
    [Abstract] [Full Text] [Related]

  • 18. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers.
    Massey JB.
    Biochim Biophys Acta; 2001 Feb 09; 1510(1-2):167-84. PubMed ID: 11342156
    [Abstract] [Full Text] [Related]

  • 19. Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin.
    Wilke N, Maggio B.
    Biophys Chem; 2006 Jun 20; 122(1):36-42. PubMed ID: 16529854
    [Abstract] [Full Text] [Related]

  • 20. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM.
    Biophys J; 2005 Jan 20; 88(1):348-59. PubMed ID: 15465865
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.