These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 15495535

  • 1. [Free fatty acids and Ca2+ in blood plasma of endurance-trained athletes after prolonged physical exercise].
    Men'shikov IV.
    Fiziol Cheloveka; 2004; 30(4):124-9. PubMed ID: 15495535
    [No Abstract] [Full Text] [Related]

  • 2. An acute oral dose of caffeine does not alter glucose kinetics during prolonged dynamic exercise in trained endurance athletes.
    Roy BD, Bosman MJ, Tarnopolsky MA.
    Eur J Appl Physiol; 2001 Aug; 85(3-4):280-6. PubMed ID: 11560082
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. L-Arginine infusion increases glucose clearance during prolonged exercise in humans.
    McConell GK, Huynh NN, Lee-Young RS, Canny BJ, Wadley GD.
    Am J Physiol Endocrinol Metab; 2006 Jan; 290(1):E60-E66. PubMed ID: 16105862
    [Abstract] [Full Text] [Related]

  • 5. The effect of galactose supplementation on endurance cycling performance.
    Stannard SR, Hawke EJ, Schnell N.
    Eur J Clin Nutr; 2009 Feb; 63(2):209-14. PubMed ID: 17928803
    [Abstract] [Full Text] [Related]

  • 6. Effect of endurance training on lung function: a one year study.
    Kippelen P, Caillaud C, Robert E, Connes P, Godard P, Prefaut C.
    Br J Sports Med; 2005 Sep; 39(9):617-21. PubMed ID: 16118298
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. (-)-hydroxycitrate ingestion increases fat oxidation during moderate intensity exercise in untrained men.
    Tomita K, Okuhara Y, Shigematsu N, Suh H, Lim K.
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):1999-2001. PubMed ID: 14519990
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Pulmonary O2 uptake on-kinetics in endurance- and sprint-trained master athletes.
    Berger NJ, Rittweger J, Kwiet A, Michaelis I, Williams AG, Tolfrey K, Jones AM.
    Int J Sports Med; 2006 Dec; 27(12):1005-12. PubMed ID: 16612739
    [Abstract] [Full Text] [Related]

  • 14. V02 'overshoot' during moderate-intensity exercise in endurance-trained athletes: the influence of exercise modality.
    Kilding AE, Jones AM.
    Respir Physiol Neurobiol; 2008 Feb 01; 160(2):139-46. PubMed ID: 17981522
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Physiological and metabolic responses of wheelchair athletes in different racing classes to prolonged exercise.
    Campbell IG, Williams C, Lakomy HK.
    J Sports Sci; 2004 May 01; 22(5):449-56. PubMed ID: 15160598
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution?
    Seiler KS, Kjerland GØ.
    Scand J Med Sci Sports; 2006 Feb 01; 16(1):49-56. PubMed ID: 16430681
    [Abstract] [Full Text] [Related]

  • 20. Influence of initial metabolic rate on pulmonary O2 uptake on-kinetics during severe intensity exercise.
    Wilkerson DP, Jones AM.
    Respir Physiol Neurobiol; 2006 Jun 01; 152(2):204-19. PubMed ID: 16337226
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.