These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 1549607
1. Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry. Gat Y, Grossjean M, Pinevsky I, Takei H, Rothman Z, Sigrist H, Lewis A, Sheves M. Proc Natl Acad Sci U S A; 1992 Mar 15; 89(6):2434-8. PubMed ID: 1549607 [Abstract] [Full Text] [Related]
2. Conformational changes in the core structure of bacteriorhodopsin. Kluge T, Olejnik J, Smilowitz L, Rothschild KJ. Biochemistry; 1998 Jul 14; 37(28):10279-85. PubMed ID: 9665736 [Abstract] [Full Text] [Related]
3. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N, Shibata M, Friedman N, Sheves M, Belenky M, Herzfeld J, Kandori H. Biochemistry; 2006 Sep 05; 45(35):10674-81. PubMed ID: 16939219 [Abstract] [Full Text] [Related]
4. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy. Weidlich O, Friedman N, Sheves M, Siebert F. Biochemistry; 1995 Oct 17; 34(41):13502-10. PubMed ID: 7577939 [Abstract] [Full Text] [Related]
5. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle. Rothschild KJ, He YW, Gray D, Roepe PD, Pelletier SL, Brown RS, Herzfeld J. Proc Natl Acad Sci U S A; 1989 Dec 17; 86(24):9832-5. PubMed ID: 2602377 [Abstract] [Full Text] [Related]
6. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts. Bagley K, Dollinger G, Eisenstein L, Singh AK, Zimányi L. Proc Natl Acad Sci U S A; 1982 Aug 17; 79(16):4972-6. PubMed ID: 6956906 [Abstract] [Full Text] [Related]
11. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Biochemistry; 2008 Nov 04; 47(44):11598-605. PubMed ID: 18837559 [Abstract] [Full Text] [Related]
12. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy. Lórenz-Fonfría VA, Furutani Y, Kandori H. Biochemistry; 2008 Apr 01; 47(13):4071-81. PubMed ID: 18321068 [Abstract] [Full Text] [Related]
14. Aspartic acid-212 of bacteriorhodopsin is ionized in the M and N photocycle intermediates: an FTIR study on specifically 13C-labeled reconstituted purple membranes. Fahmy K, Weidlich O, Engelhard M, Sigrist H, Siebert F. Biochemistry; 1993 Jun 08; 32(22):5862-9. PubMed ID: 8504106 [Abstract] [Full Text] [Related]
15. On modeling the vibrational spectra of 14-s-cis retinal conformers in bacteriorhodopsin. Mathies RA, Li XY. Biophys Chem; 1995 Jun 08; 56(1-2):47-55. PubMed ID: 7662868 [Abstract] [Full Text] [Related]
16. Evidence for light-induced lysine conformational changes during the primary event of the bacteriorhodopsin photocycle. McMaster E, Lewis A. Biochem Biophys Res Commun; 1988 Oct 14; 156(1):86-91. PubMed ID: 3140817 [Abstract] [Full Text] [Related]
17. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation. Hatanaka M, Kashima R, Kandori H, Friedman N, Sheves M, Needleman R, Lanyi JK, Maeda A. Biochemistry; 1997 May 06; 36(18):5493-8. PubMed ID: 9154932 [Abstract] [Full Text] [Related]
20. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine. Xiao Y, Hutson MS, Belenky M, Herzfeld J, Braiman MS. Biochemistry; 2004 Oct 12; 43(40):12809-18. PubMed ID: 15461453 [Abstract] [Full Text] [Related] Page: [Next] [New Search]