These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


359 related items for PubMed ID: 15498024

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters.
    Portnoy ME, Liu XF, Culotta VC.
    Mol Cell Biol; 2000 Nov; 20(21):7893-902. PubMed ID: 11027260
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis.
    Jensen LT, Ajua-Alemanji M, Culotta VC.
    J Biol Chem; 2003 Oct 24; 278(43):42036-40. PubMed ID: 12923174
    [Abstract] [Full Text] [Related]

  • 5. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1∆ mutant.
    Sekito T, Nakamura K, Manabe K, Tone J, Sato Y, Murao N, Kawano-Kawada M, Kakinuma Y.
    Biosci Biotechnol Biochem; 2014 Oct 24; 78(7):1199-202. PubMed ID: 25229858
    [Abstract] [Full Text] [Related]

  • 6. Transmembrane nine proteins in yeast and Arabidopsis affect cellular metal contents without changing vacuolar morphology.
    Hegelund JN, Jahn TP, Baekgaard L, Palmgren MG, Schjoerring JK.
    Physiol Plant; 2010 Dec 24; 140(4):355-67. PubMed ID: 20681974
    [Abstract] [Full Text] [Related]

  • 7. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae.
    MacDiarmid CW, Gaither LA, Eide D.
    EMBO J; 2000 Jun 15; 19(12):2845-55. PubMed ID: 10856230
    [Abstract] [Full Text] [Related]

  • 8. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles.
    Lin SJ, Culotta VC.
    Mol Cell Biol; 1996 Nov 15; 16(11):6303-12. PubMed ID: 8887660
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p.
    Luk EE, Culotta VC.
    J Biol Chem; 2001 Dec 14; 276(50):47556-62. PubMed ID: 11602606
    [Abstract] [Full Text] [Related]

  • 11. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.
    Sekito T, Chardwiriyapreecha S, Sugimoto N, Ishimoto M, Kawano-Kawada M, Kakinuma Y.
    Biosci Biotechnol Biochem; 2014 Dec 14; 78(6):969-75. PubMed ID: 25036121
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
    MacDiarmid CW, Milanick MA, Eide DJ.
    J Biol Chem; 2002 Oct 18; 277(42):39187-94. PubMed ID: 12161436
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Metalloregulation of yeast membrane steroid receptor homologs.
    Lyons TJ, Villa NY, Regalla LM, Kupchak BR, Vagstad A, Eide DJ.
    Proc Natl Acad Sci U S A; 2004 Apr 13; 101(15):5506-11. PubMed ID: 15060275
    [Abstract] [Full Text] [Related]

  • 19. High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae.
    Bleackley MR, Young BP, Loewen CJ, MacGillivray RT.
    Metallomics; 2011 Feb 13; 3(2):195-205. PubMed ID: 21212869
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.