These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 15503659
1. Mechanism of benzene-induced hematotoxicity and leukemogenicity: current review with implication of microarray analyses. Hirabayashi Y, Yoon BI, Li GX, Kanno J, Inoue T. Toxicol Pathol; 2004; 32 Suppl 2():12-6. PubMed ID: 15503659 [Abstract] [Full Text] [Related]
2. Mechanisms of benzene-induced hematotoxicity and leukemogenicity: cDNA microarray analyses using mouse bone marrow tissue. Yoon BI, Li GX, Kitada K, Kawasaki Y, Igarashi K, Kodama Y, Inoue T, Kobayashi K, Kanno J, Kim DY, Inoue T, Hirabayashi Y. Environ Health Perspect; 2003 Aug; 111(11):1411-20. PubMed ID: 12928149 [Abstract] [Full Text] [Related]
3. Mechanism of action of benzene toxicity: cell cycle suppression in hemopoietic progenitor cells (CFU-GM). Yoon BI, Hirabayashi Y, Kawasaki Y, Kodama Y, Kaneko T, Kim DY, Inoue T. Exp Hematol; 2001 Mar; 29(3):278-85. PubMed ID: 11274754 [Abstract] [Full Text] [Related]
4. Exposure of hematopoietic stem cells to benzene or 1,4-benzoquinone induces gender-specific gene expression. Faiola B, Fuller ES, Wong VA, Pluta L, Abernethy DJ, Rose J, Recio L. Stem Cells; 2004 Mar; 22(5):750-8. PubMed ID: 15342939 [Abstract] [Full Text] [Related]
6. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene. Yi JY, Hirabayashi Y, Choi YK, Kodama Y, Kanno J, Han JH, Inoue T, Yoon BI. Arch Toxicol; 2009 Aug; 83(8):795-803. PubMed ID: 19326098 [Abstract] [Full Text] [Related]
7. p53-dependent gene profiling for reactive oxygen species after benzene inhalation: special reference to genes associated with cell cycle regulation. Hirabayashi Y. Chem Biol Interact; 2005 May 30; 153-154():165-70. PubMed ID: 15935813 [Abstract] [Full Text] [Related]
8. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity. Yoon BI, Hirabayashi Y, Kawasaki Y, Kodama Y, Kaneko T, Kanno J, Kim DY, Fujii-Kuriyama Y, Inoue T. Toxicol Sci; 2002 Nov 30; 70(1):150-6. PubMed ID: 12388843 [Abstract] [Full Text] [Related]
9. Hematopoietic neoplastic diseases develop in C3H/He and C57BL/6 mice after benzene exposure: strain differences in bone marrow tissue responses observed using microarrays. Inoue T, Hirabayashi Y. Chem Biol Interact; 2010 Mar 19; 184(1-2):240-5. PubMed ID: 20018183 [Abstract] [Full Text] [Related]
10. Stem cell and benzene-induced malignancy and hematotoxicity. Wang L, He X, Bi Y, Ma Q. Chem Res Toxicol; 2012 Jul 16; 25(7):1303-15. PubMed ID: 22540379 [Abstract] [Full Text] [Related]
11. Benzene-induced bone-marrow toxicity: a hematopoietic stem-cell-specific, aryl hydrocarbon receptor-mediated adverse effect. Hirabayashi Y, Inoue T. Chem Biol Interact; 2010 Mar 19; 184(1-2):252-8. PubMed ID: 20035730 [Abstract] [Full Text] [Related]
12. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity. Bauer AK, Faiola B, Abernethy DJ, Marchan R, Pluta LJ, Wong VA, Gonzalez FJ, Butterworth BE, Borghoff SJ, Everitt JI, Recio L. Toxicol Sci; 2003 Apr 19; 72(2):201-9. PubMed ID: 12655032 [Abstract] [Full Text] [Related]
13. Formaldehyde and co-exposure with benzene induce compensation of bone marrow and hematopoietic stem/progenitor cells in BALB/c mice during post-exposure period. Wei C, Chen M, You H, Qiu F, Wen H, Yuan J, Xiang S, Yang X. Toxicol Appl Pharmacol; 2017 Jun 01; 324():36-44. PubMed ID: 28373009 [Abstract] [Full Text] [Related]
14. Benzene's adverse effects. Microarray's reveal breadth of toxicity. Medlin J. Environ Health Perspect; 2003 Aug 01; 111(11):A590-1. PubMed ID: 12940287 [No Abstract] [Full Text] [Related]
15. Benzene-induced hematotoxicity and bone marrow compensation in B6C3F1 mice. Farris GM, Robinson SN, Gaido KW, Wong BA, Wong VA, Hahn WP, Shah RS. Fundam Appl Toxicol; 1997 Apr 01; 36(2):119-29. PubMed ID: 9143481 [Abstract] [Full Text] [Related]
16. Benzene-induced hematopoietic toxicity transmitted by AhR in wild-type mouse and nullified by repopulation with AhR-deficient bone marrow cells: time after benzene treatment and recovery. Hirabayashi Y, Yoon BI, Li GX, Fujii-Kuriyama Y, Kaneko T, Kanno J, Inoue T. Chemosphere; 2008 Aug 01; 73(1 Suppl):S290-4. PubMed ID: 18514254 [Abstract] [Full Text] [Related]
17. Use of genetically modified mouse models to assess pathways of benzene-induced bone marrow cytotoxicity and genotoxicity. Recio L, Bauer A, Faiola B. Chem Biol Interact; 2005 May 30; 153-154():159-64. PubMed ID: 15935812 [Abstract] [Full Text] [Related]
18. Thioredoxin overexpression in mice, model of attenuation of oxidative stress, prevents benzene-induced hemato-lymphoid toxicity and thymic lymphoma. Li GX, Hirabayashi Y, Yoon BI, Kawasaki Y, Tsuboi I, Kodama Y, Kurokawa Y, Yodoi J, Kanno J, Inoue T. Exp Hematol; 2006 Dec 30; 34(12):1687-97. PubMed ID: 17157166 [Abstract] [Full Text] [Related]
19. In utero and acute exposure to benzene: investigation of DNA double-strand breaks and DNA recombination in mice. Lau A, Belanger CL, Winn LM. Mutat Res; 2009 May 31; 676(1-2):74-82. PubMed ID: 19486867 [Abstract] [Full Text] [Related]
20. Hematotoxicity and carcinogenicity of inhaled benzene. Cronkite EP, Drew RT, Inoue T, Hirabayashi Y, Bullis JE. Environ Health Perspect; 1989 Jul 31; 82():97-108. PubMed ID: 2792054 [Abstract] [Full Text] [Related] Page: [Next] [New Search]