These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 15506772
1. Rational principles for modulating fluorescence properties of fluorescein. Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, Ohkubo K, Fukuzumi S, Nagano T. J Am Chem Soc; 2004 Nov 03; 126(43):14079-85. PubMed ID: 15506772 [Abstract] [Full Text] [Related]
2. Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer. Miura T, Urano Y, Tanaka K, Nagano T, Ohkubo K, Fukuzumi S. J Am Chem Soc; 2003 Jul 16; 125(28):8666-71. PubMed ID: 12848574 [Abstract] [Full Text] [Related]
3. [How to develop custom-designed fluorescence probes for molecular imaging]. Ueno T, Urano Y, Nagano T. Nihon Rinsho; 2007 Feb 16; 65(2):247-52. PubMed ID: 17302268 [Abstract] [Full Text] [Related]
4. Evolution of fluorescein as a platform for finely tunable fluorescence probes. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T. J Am Chem Soc; 2005 Apr 06; 127(13):4888-94. PubMed ID: 15796553 [Abstract] [Full Text] [Related]
5. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. J Am Chem Soc; 2004 Mar 17; 126(10):3357-67. PubMed ID: 15012166 [Abstract] [Full Text] [Related]
6. The effect of phenyl substitution on the fluorescence characteristics of fluorescein derivatives via intramolecular photoinduced electron transfer. Zhang XF. Photochem Photobiol Sci; 2010 Sep 24; 9(9):1261-8. PubMed ID: 20714676 [Abstract] [Full Text] [Related]
7. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T. Chemistry; 2003 Apr 04; 9(7):1479-85. PubMed ID: 12658644 [Abstract] [Full Text] [Related]
8. Phenol-based lipophilic fluorescent antioxidant indicators: a rational approach. Krumova K, Oleynik P, Karam P, Cosa G. J Org Chem; 2009 May 15; 74(10):3641-51. PubMed ID: 19364120 [Abstract] [Full Text] [Related]
9. Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination. Schwarze T, Mickler W, Dosche C, Flehr R, Klamroth T, Löhmannsröben HG, Saalfrank P, Holdt HJ. Chemistry; 2010 Feb 08; 16(6):1819-25. PubMed ID: 20024987 [Abstract] [Full Text] [Related]
10. Effect of the electron donor/acceptor orientation on the fluorescence transduction efficiency of the d-PET effect of carbazole-based fluorescent boronic acid sensors. Zhang X, Wu Y, Ji S, Guo H, Song P, Han K, Wu W, Wu W, James TD, Zhao J. J Org Chem; 2010 Apr 16; 75(8):2578-88. PubMed ID: 20307091 [Abstract] [Full Text] [Related]
11. Photophysics of halogenated fluoresceins: involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of excited states. Zhang XF, Zhang I, Liu L. Photochem Photobiol; 2010 Apr 16; 86(3):492-8. PubMed ID: 20331524 [Abstract] [Full Text] [Related]
12. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chang CJ, Nolan EM, Jaworski J, Burdette SC, Sheng M, Lippard SJ. Chem Biol; 2004 Feb 16; 11(2):203-10. PubMed ID: 15123282 [Abstract] [Full Text] [Related]
14. Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophores: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation. Fahrni CJ, Yang L, VanDerveer DG. J Am Chem Soc; 2003 Apr 02; 125(13):3799-812. PubMed ID: 12656613 [Abstract] [Full Text] [Related]
15. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Egawa T, Koide Y, Hanaoka K, Komatsu T, Terai T, Nagano T. Chem Commun (Camb); 2011 Apr 14; 47(14):4162-4. PubMed ID: 21359330 [Abstract] [Full Text] [Related]
16. Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. Ueno T, Urano Y, Kojima H, Nagano T. J Am Chem Soc; 2006 Aug 23; 128(33):10640-1. PubMed ID: 16910633 [Abstract] [Full Text] [Related]
17. Rational design of d-PeT phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of alpha-hydroxyl carboxylic acids and monosaccharides. Zhang X, Chi L, Ji S, Wu Y, Song P, Han K, Guo H, James TD, Zhao J. J Am Chem Soc; 2009 Dec 02; 131(47):17452-63. PubMed ID: 19888724 [Abstract] [Full Text] [Related]
18. Mechanism of action of sensors for reactive oxygen species based on fluorescein-phenol coupling: the case of 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid. Heyne B, Maurel V, Scaiano JC. Org Biomol Chem; 2006 Mar 07; 4(5):802-7. PubMed ID: 16493462 [Abstract] [Full Text] [Related]
19. Differential tuning of the electron transfer parameters in 1,3,5-triarylpyrazolines: a rational design approach for optimizing the contrast ratio of fluorescent probes. Cody J, Mandal S, Yang L, Fahrni CJ. J Am Chem Soc; 2008 Oct 01; 130(39):13023-32. PubMed ID: 18767839 [Abstract] [Full Text] [Related]
20. Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching. Sunahara H, Urano Y, Kojima H, Nagano T. J Am Chem Soc; 2007 May 02; 129(17):5597-604. PubMed ID: 17425310 [Abstract] [Full Text] [Related] Page: [Next] [New Search]