These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 15518575

  • 1. A piezoelectric quartz crystal biosensor: the use of two single cysteine mutants of the periplasmic Escherichia coli glucose/galactose receptor as target proteins for the detection of glucose.
    Carmon KS, Baltus RE, Luck LA.
    Biochemistry; 2004 Nov 09; 43(44):14249-56. PubMed ID: 15518575
    [Abstract] [Full Text] [Related]

  • 2. Quartz crystal microbalance (QCM) with immobilized protein receptors: comparison of response to ligand binding for direct protein immobilization and protein attachment via disulfide linker.
    Baltus RE, Carmon KS, Luck LA.
    Langmuir; 2007 Mar 27; 23(7):3880-5. PubMed ID: 17323983
    [Abstract] [Full Text] [Related]

  • 3. A biosensor for estrogenic substances using the quartz crystal microbalance.
    Carmon KS, Baltus RE, Luck LA.
    Anal Biochem; 2005 Oct 15; 345(2):277-83. PubMed ID: 16125128
    [Abstract] [Full Text] [Related]

  • 4. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.
    Marx KA.
    Biomacromolecules; 2003 Oct 15; 4(5):1099-120. PubMed ID: 12959572
    [Abstract] [Full Text] [Related]

  • 5. Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application.
    Andreescu S, Luck LA.
    Anal Biochem; 2008 Apr 15; 375(2):282-90. PubMed ID: 18211816
    [Abstract] [Full Text] [Related]

  • 6. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects.
    Marx KA, Zhou T, Montrone A, McIntosh D, Braunhut SJ.
    Anal Biochem; 2007 Feb 01; 361(1):77-92. PubMed ID: 17161375
    [Abstract] [Full Text] [Related]

  • 7. Nanobiosensor design utilizing a periplasmic E. coli receptor protein immobilized within Au/polycarbonate nanopores.
    Tripathi A, Wang J, Luck LA, Suni II.
    Anal Chem; 2007 Feb 01; 79(3):1266-70. PubMed ID: 17263364
    [Abstract] [Full Text] [Related]

  • 8. Label-free detection of protein-ligand interactions by the quartz crystal microbalance.
    Janshoff A, Steinem C.
    Methods Mol Biol; 2005 Feb 01; 305():47-64. PubMed ID: 15939993
    [Abstract] [Full Text] [Related]

  • 9. Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance.
    Wu VC, Chen SH, Lin CS.
    Biosens Bioelectron; 2007 Jun 15; 22(12):2967-75. PubMed ID: 17223335
    [Abstract] [Full Text] [Related]

  • 10. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli.
    Chakraborty R, Storey E, van der Helm D.
    Biometals; 2007 Jun 15; 20(3-4):263-74. PubMed ID: 17186377
    [Abstract] [Full Text] [Related]

  • 11. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J, Liu KW, Matthews KS, Biswal SL.
    Langmuir; 2011 Apr 19; 27(8):4900-5. PubMed ID: 21410208
    [Abstract] [Full Text] [Related]

  • 12. Construction of a reagentless glucose biosensor using molecular exciton luminescence.
    Der BS, Dattelbaum JD.
    Anal Biochem; 2008 Apr 01; 375(1):132-40. PubMed ID: 18082614
    [Abstract] [Full Text] [Related]

  • 13. Engineering of ligand specificity of periplasmic binding protein for glucose sensing.
    Sakaguchi-Mikami A, Taneoka A, Yamoto R, Ferri S, Sode K.
    Biotechnol Lett; 2008 Aug 01; 30(8):1453-60. PubMed ID: 18414800
    [Abstract] [Full Text] [Related]

  • 14. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound molecular mass.
    Jonsson MP, Jönsson P, Höök F.
    Anal Chem; 2008 Nov 01; 80(21):7988-95. PubMed ID: 18834149
    [Abstract] [Full Text] [Related]

  • 15. Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR.
    Ottemann KM, Thorgeirsson TE, Kolodziej AF, Shin YK, Koshland DE.
    Biochemistry; 1998 May 19; 37(20):7062-9. PubMed ID: 9585515
    [Abstract] [Full Text] [Related]

  • 16. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J, Behrens-Kneip S, Holst O, Kleinschmidt JH.
    Biochemistry; 2009 Jun 09; 48(22):4926-36. PubMed ID: 19382746
    [Abstract] [Full Text] [Related]

  • 17. Local conformational changes in the Vibrio Na+/galactose cotransporter.
    Veenstra M, Lanza S, Hirayama BA, Turk E, Wright EM.
    Biochemistry; 2004 Mar 30; 43(12):3620-7. PubMed ID: 15035632
    [Abstract] [Full Text] [Related]

  • 18. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D, Kang Q, Li X, Cai H, Wang Y.
    Anal Chim Acta; 2007 Jun 19; 593(2):188-95. PubMed ID: 17543606
    [Abstract] [Full Text] [Related]

  • 19. Influence of liquid medium and surface morphology on the response of QCM during immobilization and hybridization of short oligonucleotides.
    Ha TH, Kim S, Lim G, Kim K.
    Biosens Bioelectron; 2004 Sep 15; 20(2):378-89. PubMed ID: 15308244
    [Abstract] [Full Text] [Related]

  • 20. Selection of ligands for affinity chromatography using quartz crystal biosensor.
    Liu Y, Tang X, Liu F, Li K.
    Anal Chem; 2005 Jul 01; 77(13):4248-56. PubMed ID: 15987134
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.