These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 1551885

  • 1. Light-stable rhodopsin. I. A rhodopsin analog reconstituted with a nonisomerizable 11-cis retinal derivative.
    Bhattacharya S, Ridge KD, Knox BE, Khorana HG.
    J Biol Chem; 1992 Apr 05; 267(10):6763-9. PubMed ID: 1551885
    [Abstract] [Full Text] [Related]

  • 2. Light-stable rhodopsin. II. An opsin mutant (TRP-265----Phe) and a retinal analog with a nonisomerizable 11-cis configuration form a photostable chromophore.
    Ridge KD, Bhattacharya S, Nakayama TA, Khorana HG.
    J Biol Chem; 1992 Apr 05; 267(10):6770-5. PubMed ID: 1532391
    [Abstract] [Full Text] [Related]

  • 3. 10,20-Methanorhodopsins: (7E,9E,13E)-10,20-methanorhodopsin and (7E,9Z,13Z)-10,20-methanorhodopsin. 11-cis-locked rhodopsin analog pigments with unusual thermal and photo-stability.
    de Grip WJ, van Oostrum J, Bovee-Geurts PH, van der Steen R, van Amsterdam LJ, Groesbeek M, Lugtenburg J.
    Eur J Biochem; 1990 Jul 20; 191(1):211-20. PubMed ID: 2143135
    [Abstract] [Full Text] [Related]

  • 4. A bacteriorhodopsin analog reconstituted with a nonisomerizable 13-trans retinal derivative displays light insensitivity.
    Bhattacharya S, Marti T, Otto H, Heyn MP, Khorana HG.
    J Biol Chem; 1992 Apr 05; 267(10):6757-62. PubMed ID: 1551884
    [Abstract] [Full Text] [Related]

  • 5. Modulation of opsin apoprotein activity by retinal. Dark activity of rhodopsin formed at low temperature.
    Surya A, Knox BE.
    J Biol Chem; 1997 Aug 29; 272(35):21745-50. PubMed ID: 9268303
    [Abstract] [Full Text] [Related]

  • 6. Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of 11-cis-retinal.
    Nakayama TA, Khorana HG.
    J Biol Chem; 1990 Sep 15; 265(26):15762-9. PubMed ID: 2144289
    [Abstract] [Full Text] [Related]

  • 7. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal.
    Han M, Groesbeek M, Smith SO, Sakmar TP.
    Biochemistry; 1998 Jan 13; 37(2):538-45. PubMed ID: 9425074
    [Abstract] [Full Text] [Related]

  • 8. Photophysiological functions of visual pigments.
    Yoshizawa T.
    Adv Biophys; 1984 Jan 13; 17():5-67. PubMed ID: 6242325
    [Abstract] [Full Text] [Related]

  • 9. 9,13-dicis-rhodopsin and its one-photon-one-double-bond isomerization.
    Shichida Y, Nakamura K, Yoshizawa T, Trehan A, Denny M, Liu RS.
    Biochemistry; 1988 Aug 23; 27(17):6495-9. PubMed ID: 2975508
    [Abstract] [Full Text] [Related]

  • 10. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA, Fahmy K, Sakmar TP.
    Biochemistry; 1994 Aug 16; 33(32):9753-61. PubMed ID: 8068654
    [Abstract] [Full Text] [Related]

  • 11. Diffusible ligand all-trans-retinal activates opsin via a palmitoylation-dependent mechanism.
    Sachs K, Maretzki D, Meyer CK, Hofmann KP.
    J Biol Chem; 2000 Mar 03; 275(9):6189-94. PubMed ID: 10692411
    [Abstract] [Full Text] [Related]

  • 12. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S, Palczewski K, Hofmann KP.
    Biochemistry; 1996 Mar 05; 35(9):2901-8. PubMed ID: 8608127
    [Abstract] [Full Text] [Related]

  • 13. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T, Khorana HG.
    Proc Natl Acad Sci U S A; 1995 Jan 03; 92(1):249-53. PubMed ID: 7816826
    [Abstract] [Full Text] [Related]

  • 14. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ.
    J Biol Chem; 2004 Nov 12; 279(46):48102-11. PubMed ID: 15322129
    [Abstract] [Full Text] [Related]

  • 15. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.
    Cooper A, Converse CA.
    Biochemistry; 1976 Jul 13; 15(14):2970-8. PubMed ID: 8077
    [Abstract] [Full Text] [Related]

  • 16. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA, Min KC, Beck M, Sakmar TP.
    J Biol Chem; 1993 Mar 05; 268(7):4661-7. PubMed ID: 8444840
    [Abstract] [Full Text] [Related]

  • 17. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore.
    Zhukovsky EA, Robinson PR, Oprian DD.
    Science; 1991 Feb 01; 251(4993):558-60. PubMed ID: 1990431
    [Abstract] [Full Text] [Related]

  • 18. Schiff-base deprotonation is mandatory for light-dependent rhodopsin phosphorylation.
    Seckler B, Rando RR.
    Biochem J; 1989 Dec 01; 264(2):489-93. PubMed ID: 2604728
    [Abstract] [Full Text] [Related]

  • 19. Constraints of opsin structure on the ligand-binding site: studies with ring-fused retinals.
    Hirano T, Lim IT, Kim DM, Zheng XG, Yoshihara K, Oyama Y, Imai H, Shichida Y, Ishiguro M.
    Photochem Photobiol; 2002 Dec 01; 76(6):606-15. PubMed ID: 12511040
    [Abstract] [Full Text] [Related]

  • 20. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.
    Piechnick R, Heck M, Sommer ME.
    Biochemistry; 2011 Aug 23; 50(33):7168-76. PubMed ID: 21766795
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.