These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
301 related items for PubMed ID: 15528712
1. characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. J Clin Microbiol; 2004 Nov; 42(11):5176-83. PubMed ID: 15528712 [Abstract] [Full Text] [Related]
2. Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. Rogers GB, Hart CA, Mason JR, Hughes M, Walshaw MJ, Bruce KD. J Clin Microbiol; 2003 Aug; 41(8):3548-58. PubMed ID: 12904354 [Abstract] [Full Text] [Related]
3. Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Kehagia V, Connett GJ, Bruce KD. J Clin Microbiol; 2006 Jul; 44(7):2601-4. PubMed ID: 16825392 [Abstract] [Full Text] [Related]
4. Bacterial activity in cystic fibrosis lung infections. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Kehagia V, Jones GR, Bruce KD. Respir Res; 2005 Jun 01; 6(1):49. PubMed ID: 15929792 [Abstract] [Full Text] [Related]
5. Fungal and Bacterial Diversity of Airway Microbiota in Adults with Cystic Fibrosis: Concordance Between Conventional Methods and Ultra-Deep Sequencing, and Their Practical use in the Clinical Laboratory. Botterel F, Angebault C, Cabaret O, Stressmann FA, Costa JM, Wallet F, Wallaert B, Bruce K, Delhaes L. Mycopathologia; 2018 Feb 01; 183(1):171-183. PubMed ID: 28766039 [Abstract] [Full Text] [Related]
6. Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches. Rogers GB, Daniels TW, Tuck A, Carroll MP, Connett GJ, David GJ, Bruce KD. BMC Pulm Med; 2009 Apr 15; 9():14. PubMed ID: 19368727 [Abstract] [Full Text] [Related]
10. Modelling the bacterial communities associated with cystic fibrosis lung infections. Spasenovski T, Carroll MP, Lilley AK, Payne MS, Bruce KD. Eur J Clin Microbiol Infect Dis; 2010 Mar 15; 29(3):319-28. PubMed ID: 20099020 [Abstract] [Full Text] [Related]
11. Comparison of conventional and molecular methods for the detection of bacterial pathogens in sputum samples from cystic fibrosis patients. van Belkum A, Renders NH, Smith S, Overbeek SE, Verbrugh HA. FEMS Immunol Med Microbiol; 2000 Jan 15; 27(1):51-7. PubMed ID: 10617790 [Abstract] [Full Text] [Related]
12. Assessing terminal restriction fragment length polymorphism suitability for the description of bacterial community structure and dynamics in hydrocarbon-polluted marine environments. Denaro R, D'Auria G, Di Marco G, Genovese M, Troussellier M, Yakimov MM, Giuliano L. Environ Microbiol; 2005 Jan 15; 7(1):78-87. PubMed ID: 15643938 [Abstract] [Full Text] [Related]
13. The metabolic footprint of the airway bacterial community in cystic fibrosis. Narayanamurthy V, Sweetnam JM, Denner DR, Chen LW, Naureckas ET, Laxman B, White SR. Microbiome; 2017 Jun 30; 5(1):67. PubMed ID: 28666467 [Abstract] [Full Text] [Related]