These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
557 related items for PubMed ID: 15530059
1. Fibrillar beta-lactoglobulin gels: Part 2. Dynamic mechanical characterization of heat-set systems. Gosal WS, Clark AH, Ross-Murphy SB. Biomacromolecules; 2004; 5(6):2420-9. PubMed ID: 15530059 [Abstract] [Full Text] [Related]
2. Fibrillar beta-lactoglobulin gels: Part 3. Dynamic mechanical characterization of solvent-induced systems. Gosal WS, Clark AH, Ross-Murphy SB. Biomacromolecules; 2004; 5(6):2430-8. PubMed ID: 15530060 [Abstract] [Full Text] [Related]
3. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Gosal WS, Clark AH, Ross-Murphy SB. Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058 [Abstract] [Full Text] [Related]
4. Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions. Ikeda S, Nishinari K, Foegeding EA. Biopolymers; 2004; 56(2):109-19. PubMed ID: 11592057 [Abstract] [Full Text] [Related]
5. Molecular differences in the formation and structure of fine-stranded and particulate beta-lactoglobulin gels. Lefèvre T, Subirade M. Biopolymers; 2000 Dec; 54(7):578-86. PubMed ID: 10984409 [Abstract] [Full Text] [Related]
8. Molecular description of the formation and structure of plasticized globular protein films. Lefèvre T, Subirade M, Pézolet M. Biomacromolecules; 2005 Dec; 6(6):3209-19. PubMed ID: 16283748 [Abstract] [Full Text] [Related]
9. Structural changes during heat-induced gelation of globular protein dispersions. Ikeda S, Nishinari K. Biopolymers; 2001 Aug; 59(2):87-102. PubMed ID: 11373722 [Abstract] [Full Text] [Related]
11. Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH beta-lactoglobulin gels. Kavanagh GM, Clark AH, Ross-Murphy SB. Int J Biol Macromol; 2000 Oct 10; 28(1):41-50. PubMed ID: 11033176 [Abstract] [Full Text] [Related]
12. Fibril assemblies in aqueous whey protein mixtures. Bolder SG, Hendrickx H, Sagis LM, van der Linden E. J Agric Food Chem; 2006 Jun 14; 54(12):4229-34. PubMed ID: 16756351 [Abstract] [Full Text] [Related]
13. Disassembly and reassembly of amyloid fibrils in water-ethanol mixtures. Jordens S, Adamcik J, Amar-Yuli I, Mezzenga R. Biomacromolecules; 2011 Jan 10; 12(1):187-93. PubMed ID: 21142059 [Abstract] [Full Text] [Related]
14. Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging. Woo HD, Moon TW, Gunasekaran S, Ko S. J Dairy Sci; 2013 Sep 10; 96(9):5565-74. PubMed ID: 23871379 [Abstract] [Full Text] [Related]
15. Physical properties of acid milk gels prepared at 37 degrees C up to gelation but at different incubation temperatures for the remainder of fermentation. Peng Y, Horne DS, Lucey JA. J Dairy Sci; 2010 May 10; 93(5):1910-7. PubMed ID: 20412904 [Abstract] [Full Text] [Related]
17. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin. Veerman C, Baptist H, Sagis LM, van der Linden E. J Agric Food Chem; 2003 Jun 18; 51(13):3880-5. PubMed ID: 12797759 [Abstract] [Full Text] [Related]
18. Characterization of beta-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy. Oboroceanu D, Wang L, Brodkorb A, Magner E, Auty MA. J Agric Food Chem; 2010 Mar 24; 58(6):3667-73. PubMed ID: 20187607 [Abstract] [Full Text] [Related]