These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 15530792

  • 81. High-throughput approaches for the genetic diagnosis of retinal dystrophies.
    Pomares E, Marfany G, Gonzàlez-Duarte R.
    Adv Exp Med Biol; 2012; 723():329-35. PubMed ID: 22183350
    [No Abstract] [Full Text] [Related]

  • 82. Objective evaluation measures of genetic marker selection in large-scale SNP genotyping.
    Kaminuma E, Masuya H, Miura I, Motegi H, Takahasi KR, Nakazawa M, Matsui M, Gondo Y, Noda T, Shiroishi T, Wakana S, Toyoda T.
    J Bioinform Comput Biol; 2008 Oct; 6(5):905-17. PubMed ID: 18942158
    [Abstract] [Full Text] [Related]

  • 83. Theoretical aspects of genomic variation screening using DNA microarrays.
    Vainrub A, Pettitt BM.
    Biopolymers; 2004 Apr 05; 73(5):614-20. PubMed ID: 15048785
    [Abstract] [Full Text] [Related]

  • 84. Simultaneous detection of multiple single-nucleotide polymorphisms by a simple membrane chip.
    Yang YH, Li RN, Tzou SC, Wang JY, Lee HP, Wang HC, Chen FM, Wang YH, Hsieh MC, Huang MY, Tseng WL, Lin SR, Cheng TL.
    Genet Test Mol Biomarkers; 2010 Oct 05; 14(5):653-9. PubMed ID: 20858048
    [Abstract] [Full Text] [Related]

  • 85. SNP genotyping for the genetic monitoring of laboratory mice by using a microarray-based method with dualcolour fluorescence hybridisation.
    Cui SF, Zhou Q, Qu XH.
    Altern Lab Anim; 2012 Jul 05; 40(3):155-63. PubMed ID: 22943516
    [Abstract] [Full Text] [Related]

  • 86. A novel single nucleotide polymorphisms detection sensors based on magnetic nanoparticles array and dual-color single base extension.
    Liu H, Li S, Tian L, Liu L, He N.
    J Nanosci Nanotechnol; 2010 Aug 05; 10(8):5311-5. PubMed ID: 21125888
    [Abstract] [Full Text] [Related]

  • 87. SNPs and chips: genomic data in safety evaluation and risk assessment.
    MacGregor JT.
    Toxicol Sci; 2003 Jun 05; 73(2):207-8. PubMed ID: 12700407
    [No Abstract] [Full Text] [Related]

  • 88. Automated single-nucleotide polymorphism analysis using fluorescence excitation-emission spectroscopy and one-class classifiers.
    Xu Y, Brereton RG.
    Anal Bioanal Chem; 2007 Jun 05; 388(3):655-64. PubMed ID: 17443313
    [Abstract] [Full Text] [Related]

  • 89. [DNA chips--a new diagnostic revolution?].
    Pastinen T, Perola M.
    Duodecim; 1998 Jun 05; 114(9):829, 831. PubMed ID: 11524802
    [No Abstract] [Full Text] [Related]

  • 90. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe.
    Zhang Y, Ai J, Gu Q, Gao Q, Qi H, Zhang C.
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar 05; 174():286-290. PubMed ID: 27960142
    [Abstract] [Full Text] [Related]

  • 91. Analysis of clinically relevant single-nucleotide polymorphisms by use of microelectronic array technology.
    Santacroce R, Ratti A, Caroli F, Foglieni B, Ferraris A, Cremonesi L, Margaglione M, Seri M, Ravazzolo R, Restagno G, Dallapiccola B, Rappaport E, Pollak ES, Surrey S, Ferrari M, Fortina P.
    Clin Chem; 2002 Dec 05; 48(12):2124-30. PubMed ID: 12446467
    [Abstract] [Full Text] [Related]

  • 92. Microchip electrophoresis: a method for high-speed SNP detection.
    Schmalzing D, Belenky A, Novotny MA, Koutny L, Salas-Solano O, El-Difrawy S, Adourian A, Matsudaira P, Ehrlich D.
    Nucleic Acids Res; 2000 May 01; 28(9):E43. PubMed ID: 10756210
    [Abstract] [Full Text] [Related]

  • 93. One-tube restriction enzyme digest and fluorescent labeling for restriction endonuclease fingerprinting single-strand conformational polymorphism.
    Bruland O, Knappskog PM.
    Biotechniques; 2004 Dec 01; 37(6):906, 908, 910 passim. PubMed ID: 15597538
    [No Abstract] [Full Text] [Related]

  • 94. Directly arylated oligonucleotides as fluorescent molecular rotors for probing DNA single-nucleotide polymorphisms.
    Ravi Kumara GS, Seo YJ.
    Bioorg Med Chem; 2022 Feb 15; 56():116617. PubMed ID: 35051812
    [Abstract] [Full Text] [Related]

  • 95. Molecular diagnostics in infectious skin diseases.
    Kempf W, Flaig MJ, Kutzner H.
    J Dtsch Dermatol Ges; 2013 May 15; 11 Suppl 4():50-8. PubMed ID: 23721643
    [No Abstract] [Full Text] [Related]

  • 96. SNP arrays in heterogeneous tissue: highly accurate collection of both germline and somatic genetic information from unpaired single tumor samples.
    Assié G, LaFramboise T, Platzer P, Bertherat J, Stratakis CA, Eng C.
    Am J Hum Genet; 2008 Apr 15; 82(4):903-15. PubMed ID: 18355774
    [Abstract] [Full Text] [Related]

  • 97. DNA chip technology.
    Jung A.
    Anal Bioanal Chem; 2002 Jan 15; 372(1):41-2. PubMed ID: 11939210
    [No Abstract] [Full Text] [Related]

  • 98. DNA chips: promising toys have become powerful tools.
    Gerhold D, Rushmore T, Caskey CT.
    Trends Biochem Sci; 1999 May 15; 24(5):168-73. PubMed ID: 10322428
    [Abstract] [Full Text] [Related]

  • 99. SNP typing on the NanoChip electronic microarray.
    Børsting C, Sanchez JJ, Morling N.
    Methods Mol Biol; 2005 May 15; 297():155-68. PubMed ID: 15570106
    [Abstract] [Full Text] [Related]

  • 100. More efficient photolithographic synthesis of DNA-chips by photosensitization.
    Wöll D, Walbert S, Stengele KP, Green R, Albert T, Pfleiderer W, Steiner UE.
    Nucleosides Nucleotides Nucleic Acids; 2003 May 15; 22(5-8):1395-8. PubMed ID: 14565427
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.