These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 15537801
1. Prediction of site-specific amino acid distributions and limits of divergent evolutionary changes in protein sequences. Porto M, Roman HE, Vendruscolo M, Bastolla U. Mol Biol Evol; 2005 Mar; 22(3):630-8. PubMed ID: 15537801 [Abstract] [Full Text] [Related]
2. Looking at structure, stability, and evolution of proteins through the principal eigenvector of contact matrices and hydrophobicity profiles. Bastolla U, Porto M, Roman HE, Vendruscolo M. Gene; 2005 Mar 14; 347(2):219-30. PubMed ID: 15777696 [Abstract] [Full Text] [Related]
3. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank. Bastolla U, Porto M, Roman HE, Vendruscolo M. BMC Evol Biol; 2006 May 31; 6():43. PubMed ID: 16737532 [Abstract] [Full Text] [Related]
4. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences. Bastolla U, Ortíz AR, Porto M, Teichert F. Proteins; 2008 Dec 31; 73(4):872-88. PubMed ID: 18536008 [Abstract] [Full Text] [Related]
5. Local interactions in protein folding determined through an inverse folding model. Bastolla U, Porto M, Ortíz AR. Proteins; 2008 Apr 31; 71(1):278-99. PubMed ID: 17932940 [Abstract] [Full Text] [Related]
6. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. Badasyan A, Liu Z, Chan HS. J Mol Biol; 2008 Dec 12; 384(2):512-30. PubMed ID: 18823994 [Abstract] [Full Text] [Related]
7. Stability constraints and protein evolution: the role of chain length, composition and disulfide bonds. Bastolla U, Demetrius L. Protein Eng Des Sel; 2005 Sep 12; 18(9):405-15. PubMed ID: 16085657 [Abstract] [Full Text] [Related]
8. Principal eigenvector of contact matrices and hydrophobicity profiles in proteins. Bastolla U, Porto M, Roman HE, Vendruscolo M. Proteins; 2005 Jan 01; 58(1):22-30. PubMed ID: 15523667 [Abstract] [Full Text] [Related]
9. Understanding hierarchical protein evolution from first principles. Dokholyan NV, Shakhnovich EI. J Mol Biol; 2001 Sep 07; 312(1):289-307. PubMed ID: 11545603 [Abstract] [Full Text] [Related]
10. Topological thermal instability and length of proteins. Burioni R, Cassi D, Cecconi F, Vulpiani A. Proteins; 2004 May 15; 55(3):529-35. PubMed ID: 15103617 [Abstract] [Full Text] [Related]
11. Design of amino acid sequences to fold into C(alpha)-model proteins. Amatori A, Tiana G, Sutto L, Ferkinghoff-Borg J, Trovato A, Broglia RA. J Chem Phys; 2005 Aug 01; 123(5):054904. PubMed ID: 16108690 [Abstract] [Full Text] [Related]
13. Designability of protein structures: a lattice-model study using the Miyazawa-Jernigan matrix. Li H, Tang C, Wingreen NS. Proteins; 2002 Nov 15; 49(3):403-12. PubMed ID: 12360530 [Abstract] [Full Text] [Related]
14. Relationship between energy distribution and fold stability: Insights from molecular dynamics simulations of native and mutant proteins. Morra G, Colombo G. Proteins; 2008 Aug 15; 72(2):660-72. PubMed ID: 18247351 [Abstract] [Full Text] [Related]
15. A statistical model for predicting protein folding rates from amino acid sequence with structural class information. Gromiha MM. J Chem Inf Model; 2005 Aug 15; 45(2):494-501. PubMed ID: 15807515 [Abstract] [Full Text] [Related]
16. Understanding the role of the topology in protein folding by computational inverse folding experiments. Mucherino A, Costantini S, di Serafino D, D'Apuzzo M, Facchiano A, Colonna G. Comput Biol Chem; 2008 Aug 15; 32(4):233-9. PubMed ID: 18479970 [Abstract] [Full Text] [Related]
17. Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. Mayrose I, Graur D, Ben-Tal N, Pupko T. Mol Biol Evol; 2004 Sep 15; 21(9):1781-91. PubMed ID: 15201400 [Abstract] [Full Text] [Related]
18. Physical origins of protein superfamilies. Zeldovich KB, Berezovsky IN, Shakhnovich EI. J Mol Biol; 2006 Apr 07; 357(4):1335-43. PubMed ID: 16483605 [Abstract] [Full Text] [Related]
19. Generality of the structurally constrained protein evolution model: assessment on representatives of the four main fold classes. Parisi G, Echave J. Gene; 2005 Jan 17; 345(1):45-53. PubMed ID: 15716088 [Abstract] [Full Text] [Related]
20. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments. Godoy-Ruiz R, Ariza F, Rodriguez-Larrea D, Perez-Jimenez R, Ibarra-Molero B, Sanchez-Ruiz JM. J Mol Biol; 2006 Oct 06; 362(5):966-78. PubMed ID: 16935299 [Abstract] [Full Text] [Related] Page: [Next] [New Search]