These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Nitschke M, Costa SG, Haddad R, Gonçalves LA, Eberlin MN, Contiero J. Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563 [Abstract] [Full Text] [Related]
3. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Camilios Neto D, Meira JA, Tiburtius E, Zamora PP, Bugay C, Mitchell DA, Krieger N. Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471 [Abstract] [Full Text] [Related]
4. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Nitschke M, Costa SG, Contiero J. Appl Biochem Biotechnol; 2010 Apr; 160(7):2066-74. PubMed ID: 19649781 [Abstract] [Full Text] [Related]
5. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Chen SY, Lu WB, Wei YH, Chen WM, Chang JS. Biotechnol Prog; 2007 Apr; 23(3):661-6. PubMed ID: 17461551 [Abstract] [Full Text] [Related]
6. Influence of biosurfactant on the diesel oil remediation in soil-water system. Li YY, Zheng XL, Li B. J Environ Sci (China); 2006 Apr; 18(3):587-90. PubMed ID: 17294662 [Abstract] [Full Text] [Related]
7. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM. Biotechnol Prog; 2002 Apr; 18(6):1277-81. PubMed ID: 12467462 [Abstract] [Full Text] [Related]
8. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS. Bioresour Technol; 2008 Mar; 99(5):1157-64. PubMed ID: 17434729 [Abstract] [Full Text] [Related]
9. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Camilios Neto D, Meira JA, de Araújo JM, Mitchell DA, Krieger N. Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338 [Abstract] [Full Text] [Related]
10. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Kumar CG, Mamidyala SK, Sujitha P, Muluka H, Akkenapally S. Biotechnol Prog; 2012 Dec; 28(6):1507-16. PubMed ID: 22961871 [Abstract] [Full Text] [Related]
11. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Whang LM, Liu PW, Ma CC, Cheng SS. J Hazard Mater; 2008 Feb 28; 151(1):155-63. PubMed ID: 17614195 [Abstract] [Full Text] [Related]
12. Enhancement of rhamnoplipid production in residual soybean oil by an isolated strain of Pseudomonas aeruginosa. de Lima CJ, França FP, Sérvulo EF, Resende MM, Cardoso VL. Appl Biochem Biotechnol; 2007 Apr 28; 137-140(1-12):463-70. PubMed ID: 18478409 [Abstract] [Full Text] [Related]
13. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil. Ndjou'ou AC, Cassidy D. Chemosphere; 2006 Nov 28; 65(9):1610-5. PubMed ID: 16725177 [Abstract] [Full Text] [Related]
14. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Müller MM, Hörmann B, Syldatk C, Hausmann R. Appl Microbiol Biotechnol; 2010 Jun 28; 87(1):167-74. PubMed ID: 20217074 [Abstract] [Full Text] [Related]
15. Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Benincasa M. Curr Microbiol; 2007 Jun 28; 54(6):445-9. PubMed ID: 17457644 [Abstract] [Full Text] [Related]
16. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil. Ángeles MT, Refugio RV. Braz J Microbiol; 2013 Jun 28; 44(2):595-605. PubMed ID: 24294259 [Abstract] [Full Text] [Related]
17. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Saikia RR, Deka S, Deka M, Sarma H. J Basic Microbiol; 2012 Aug 28; 52(4):446-57. PubMed ID: 22144225 [Abstract] [Full Text] [Related]
18. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. Pirôllo MP, Mariano AP, Lovaglio RB, Costa SG, Walter V, Hausmann R, Contiero J. J Appl Microbiol; 2008 Nov 28; 105(5):1484-90. PubMed ID: 18795978 [Abstract] [Full Text] [Related]
19. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Li AH, Xu MY, Sun W, Sun GP. Appl Biochem Biotechnol; 2011 Mar 28; 163(5):600-11. PubMed ID: 20830582 [Abstract] [Full Text] [Related]
20. Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A. FEMS Microbiol Lett; 2005 Dec 01; 253(1):125-31. PubMed ID: 16239086 [Abstract] [Full Text] [Related] Page: [Next] [New Search]