These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP, Trail M, Hu Y, Nenes A, Russell AG. J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [Abstract] [Full Text] [Related]
3. Comparison of two photochemical modeling systems in a tropical urban area. Zhang B, Vautard R, Oanh NT. J Air Waste Manag Assoc; 2005 Jul; 55(7):903-18. PubMed ID: 16111130 [Abstract] [Full Text] [Related]
6. Understanding the effectiveness of precursor reductions in lowering 8-hr ozone concentrations--Part II. The eastern United States. Reynolds SD, Blanchard CL, Ziman SD. J Air Waste Manag Assoc; 2004 Nov; 54(11):1452-70. PubMed ID: 15587557 [Abstract] [Full Text] [Related]
7. Development of a speciated, hourly, and gridded air pollutants emission modeling system--a case study on the precursors of photochemical smog in the Seoul metropolitan area, Korea. Kim DY, Kim JW. J Air Waste Manag Assoc; 2000 Mar; 50(3):340-7. PubMed ID: 10734706 [Abstract] [Full Text] [Related]
8. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions. Cai C, Kelly JT, Avise JC, Kaduwela AP, Stockwell WR. J Air Waste Manag Assoc; 2011 May; 61(5):559-72. PubMed ID: 21608496 [Abstract] [Full Text] [Related]
9. Ozone and its potential control strategy for Chon Buri city, Thailand. Prabamroong T, Manomaiphiboon K, Limpaseni W, Sukhapan J, Bonnet S. J Air Waste Manag Assoc; 2012 Dec; 62(12):1411-22. PubMed ID: 23362760 [Abstract] [Full Text] [Related]
12. Expected ozone benefits of reducing nitrogen oxide (NOx) emissions from coal-fired electricity generating units in the eastern United States. Vinciguerra T, Bull E, Canty T, He H, Zalewsky E, Woodman M, Aburn G, Ehrman S, Dickerson RR. J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304 [Abstract] [Full Text] [Related]
13. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States. Pun BK, Wu SY, Seigneur C. Environ Sci Technol; 2002 Aug 15; 36(16):3586-96. PubMed ID: 12214653 [Abstract] [Full Text] [Related]
14. Evaluation of ozone-nitrogen oxides-volatile organic compound sensitivity of Cincinnati, Ohio. Torres-Jardón R, Keener TC. J Air Waste Manag Assoc; 2006 Mar 15; 56(3):322-33. PubMed ID: 16573195 [Abstract] [Full Text] [Related]
16. Control of ozone precursors in a complex industrial terrain by using multiscale-nested air quality models with fine spatial resolution (1 km2). Jiménez P, Parra R, Baldasano JM. J Air Waste Manag Assoc; 2005 Aug 15; 55(8):1085-99. PubMed ID: 16187579 [Abstract] [Full Text] [Related]
20. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. Cardelino CA, Chameides WL. J Air Waste Manag Assoc; 1995 Mar 15; 45(3):161-80. PubMed ID: 15658156 [Abstract] [Full Text] [Related] Page: [Next] [New Search]