These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 15544551

  • 1. Intervention of hepatic glucose production. Small molecule regulators of potential targets for Type 2 diabetes therapy.
    Barf T.
    Mini Rev Med Chem; 2004 Oct; 4(8):897-908. PubMed ID: 15544551
    [Abstract] [Full Text] [Related]

  • 2. Pharmacological regulation of hepatic glucose production.
    Link JT.
    Curr Opin Investig Drugs; 2003 Apr; 4(4):421-9. PubMed ID: 12808881
    [Abstract] [Full Text] [Related]

  • 3. Pharmacological approaches to inhibit endogenous glucose production as a means of anti-diabetic therapy.
    McCormack JG, Westergaard N, Kristiansen M, Brand CL, Lau J.
    Curr Pharm Des; 2001 Sep; 7(14):1451-74. PubMed ID: 11529255
    [Abstract] [Full Text] [Related]

  • 4. New hepatic targets for glycaemic control in diabetes.
    Agius L.
    Best Pract Res Clin Endocrinol Metab; 2007 Dec; 21(4):587-605. PubMed ID: 18054737
    [Abstract] [Full Text] [Related]

  • 5. Glycogen phosphorylase inhibitors.
    Henke BR, Sparks SM.
    Mini Rev Med Chem; 2006 Aug; 6(8):845-57. PubMed ID: 16918491
    [Abstract] [Full Text] [Related]

  • 6. Metabolic Effects of Metformin in Humans.
    Adeva-Andany MM, Rañal-Muíño E, Fernández-Fernández C, Pazos-García C, Vila-Altesor M.
    Curr Diabetes Rev; 2019 Aug; 15(4):328-339. PubMed ID: 30306875
    [Abstract] [Full Text] [Related]

  • 7. Discovery and structure-activity relationships study of thieno[2,3-b]pyridine analogues as hepatic gluconeogenesis inhibitors.
    Ma F, Liu J, Zhou T, Lei M, Chen J, Wang X, Zhang Y, Shen X, Hu L.
    Eur J Med Chem; 2018 May 25; 152():307-317. PubMed ID: 29733999
    [Abstract] [Full Text] [Related]

  • 8. Mechanism by which metformin reduces glucose production in type 2 diabetes.
    Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI.
    Diabetes; 2000 Dec 25; 49(12):2063-9. PubMed ID: 11118008
    [Abstract] [Full Text] [Related]

  • 9. Current anti-diabetic agents and their molecular targets: A review.
    Kerru N, Singh-Pillay A, Awolade P, Singh P.
    Eur J Med Chem; 2018 May 25; 152():436-488. PubMed ID: 29751237
    [Abstract] [Full Text] [Related]

  • 10. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes.
    van Poelje PD, Potter SC, Erion MD.
    Handb Exp Pharmacol; 2011 May 25; (203):279-301. PubMed ID: 21484576
    [Abstract] [Full Text] [Related]

  • 11. Potential drug targets and progress towards pharmacologic inhibition of hepatic glucose production.
    Kurukulasuriya R, Link JT, Madar DJ, Pei Z, Richards SJ, Rohde JJ, Souers AJ, Szczepankiewicz BG.
    Curr Med Chem; 2003 Jan 25; 10(2):123-53. PubMed ID: 12570714
    [Abstract] [Full Text] [Related]

  • 12. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3β and CREB phosphorylation in human HepG2 cells.
    Yuan HD, Piao GC.
    Biosci Biotechnol Biochem; 2011 Jan 25; 75(6):1079-84. PubMed ID: 21670525
    [Abstract] [Full Text] [Related]

  • 13. Glucagon as a target for the treatment of Type 2 diabetes.
    Sloop KW, Michael MD, Moyers JS.
    Expert Opin Ther Targets; 2005 Jun 25; 9(3):593-600. PubMed ID: 15948676
    [Abstract] [Full Text] [Related]

  • 14. Contributions of hepatic gluconeogenesis suppression and compensative glycogenolysis on the glucose-lowering effect of CS-917, a fructose 1,6-bisphosphatase inhibitor, in non-obese type 2 diabetes Goto-Kakizaki rats.
    Yoshida T, Okuno A, Takahashi K, Ogawa J, Hagisawa Y, Kanda S, Fujiwara T.
    J Pharmacol Sci; 2011 Jun 25; 115(3):329-35. PubMed ID: 21350313
    [Abstract] [Full Text] [Related]

  • 15. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat.
    Narasimhan A, Chinnaiyan M, Karundevi B.
    Appl Physiol Nutr Metab; 2015 Aug 25; 40(8):769-81. PubMed ID: 26201855
    [Abstract] [Full Text] [Related]

  • 16. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.
    Sohrabipour S, Sharifi MR, Talebi A, Sharifi M, Soltani N.
    Eur J Pharmacol; 2018 May 05; 826():75-84. PubMed ID: 29391158
    [Abstract] [Full Text] [Related]

  • 17. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase.
    Shibib BA, Khan LA, Rahman R.
    Biochem J; 1993 May 15; 292 ( Pt 1)(Pt 1):267-70. PubMed ID: 8389127
    [Abstract] [Full Text] [Related]

  • 18. Current strategies for the inhibition of hepatic glucose production in type 2 diabetes.
    Edgerton DS, Johnson KM, Cherrington AD.
    Front Biosci (Landmark Ed); 2009 Jan 01; 14(3):1169-81. PubMed ID: 19273123
    [Abstract] [Full Text] [Related]

  • 19. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin.
    Song S, Andrikopoulos S, Filippis C, Thorburn AW, Khan D, Proietto J.
    Am J Physiol Endocrinol Metab; 2001 Aug 01; 281(2):E275-82. PubMed ID: 11440903
    [Abstract] [Full Text] [Related]

  • 20. Prospects for pharmacologic inhibition of hepatic glucose production.
    Kurukulasuriya R, Link JT, Madar DJ, Pei Z, Rohde JJ, Richards SJ, Souers AJ, Szczepankiewicz BG.
    Curr Med Chem; 2003 Jan 01; 10(2):99-121. PubMed ID: 12570713
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.