These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


287 related items for PubMed ID: 15550176

  • 1. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves.
    Flor-Henry M, McCabe TC, de Bruxelles GL, Roberts MR.
    BMC Plant Biol; 2004 Nov 18; 4():19. PubMed ID: 15550176
    [Abstract] [Full Text] [Related]

  • 2. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues.
    Birtic S, Ksas B, Genty B, Mueller MJ, Triantaphylidès C, Havaux M.
    Plant J; 2011 Sep 18; 67(6):1103-15. PubMed ID: 21595761
    [Abstract] [Full Text] [Related]

  • 3. Multicolor fluorescence imaging of leaves--a useful tool for visualizing systemic viral infections in plants.
    Pineda M, Gáspár L, Morales F, Szigeti Z, Barón M.
    Photochem Photobiol; 2008 Sep 18; 84(5):1048-60. PubMed ID: 18435702
    [Abstract] [Full Text] [Related]

  • 4. Changes in the room-temperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves.
    Franck F, Dewez D, Popovic R.
    Photochem Photobiol; 2005 Sep 18; 81(2):431-6. PubMed ID: 15584772
    [Abstract] [Full Text] [Related]

  • 5. Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ).
    Wagner H, Gilbert M, Goss R, Wilhelm C.
    J Photochem Photobiol B; 2006 Jun 01; 83(3):172-9. PubMed ID: 16488152
    [Abstract] [Full Text] [Related]

  • 6. Autoluminescence imaging: a non-invasive tool for mapping oxidative stress.
    Havaux M, Triantaphylidès C, Genty B.
    Trends Plant Sci; 2006 Oct 01; 11(10):480-4. PubMed ID: 16956784
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. 3-D cell-level chlorophyll fluorescence imaging of ozone-injured sunflower leaves using a new passive light microscope system.
    Endo R, Omasa K.
    J Exp Bot; 2007 Oct 01; 58(4):765-72. PubMed ID: 17110586
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (cucurbita pepo) leaves.
    Jovanić BR, Dramićanin MD.
    Luminescence; 2003 Oct 01; 18(5):274-7. PubMed ID: 14587079
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models.
    Cordón GB, Lagorio MG.
    Photochem Photobiol Sci; 2006 Aug 01; 5(8):735-40. PubMed ID: 16886088
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Simple luminescence detector for capillary electrophoresis.
    Segura-Carretero A, Fernández-Sánchez JF, Fernández-Gutiérrez A.
    Methods Mol Biol; 2009 Aug 01; 503():221-37. PubMed ID: 19151944
    [Abstract] [Full Text] [Related]

  • 19. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system.
    Hanaoka K, Kikuchi K, Kobayashi S, Nagano T.
    J Am Chem Soc; 2007 Nov 07; 129(44):13502-9. PubMed ID: 17927176
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.