These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 15558
1. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Henderson PJ, Giddens RA, Jones-Mortimer MC. Biochem J; 1977 Feb 15; 162(2):309-20. PubMed ID: 15558 [Abstract] [Full Text] [Related]
4. Properties of the entry and exit reactions of the beta-methyl galactoside transport system in Escherichia coli. Wilson DB. J Bacteriol; 1976 Jun 15; 126(3):1156-65. PubMed ID: 780342 [Abstract] [Full Text] [Related]
7. Uptake of galactose into Escherichia coli by facilitated diffusion. Kornberg HL, Riordan C. J Gen Microbiol; 1976 May 15; 94(1):75-89. PubMed ID: 778334 [Abstract] [Full Text] [Related]
8. The computerized derivation of steady-state rate equations for enzyme kinetics. Herries DG. Biochem J; 1984 Oct 15; 223(2):551-3. PubMed ID: 6497862 [Abstract] [Full Text] [Related]
9. A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli. Torres JC, Guixé V, Babul J. Biochem J; 1997 Nov 01; 327 ( Pt 3)(Pt 3):675-84. PubMed ID: 9581542 [Abstract] [Full Text] [Related]
10. Roles of individual mgl gene products in the beta-methylgalactoside transport system of Escherichia coli K12. Robbins AR, Guzman R, Rotman B. J Biol Chem; 1976 May 25; 251(10):3112-6. PubMed ID: 773938 [Abstract] [Full Text] [Related]
11. Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12. Robbins AR, Rotman B. Proc Natl Acad Sci U S A; 1975 Feb 25; 72(2):423-7. PubMed ID: 1091926 [Abstract] [Full Text] [Related]
12. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. Adhya S, Echols H. J Bacteriol; 1966 Sep 25; 92(3):601-8. PubMed ID: 5332079 [Abstract] [Full Text] [Related]
13. Properties of a Na+/galactose (glucose) symport system in Vibrio parahaemolyticus. Sarker RI, Ogawa W, Tsuda M, Tanaka S, Tsuchiya T. Biochim Biophys Acta; 1996 Mar 13; 1279(2):149-56. PubMed ID: 8603081 [Abstract] [Full Text] [Related]
14. Sugar transport across the peritubular face of renal cells of the flounder. Kleinzeller A, McAvoy EM. J Gen Physiol; 1973 Aug 13; 62(2):169-84. PubMed ID: 4722567 [Abstract] [Full Text] [Related]
15. An automatic method for deriving steady-state rate equations. Cornish-Bowden A. Biochem J; 1977 Jul 01; 165(1):55-9. PubMed ID: 889575 [Abstract] [Full Text] [Related]
16. Renal sugar transport in the winter flounder. II. Galactose transport system. Kleinzeller A, Dubyak GR, Mullin JM. Am J Physiol; 1976 Aug 01; 231(2):608-13. PubMed ID: 961914 [Abstract] [Full Text] [Related]
17. Structural requirements for active intestinal sugar transport. The involvement of hydrogen bonds at C-1 and C-6 of the sugar. Barnett JE, Jarvis WT, Munday KA. Biochem J; 1968 Aug 01; 109(1):61-7. PubMed ID: 5669849 [Abstract] [Full Text] [Related]
18. Transport systems for galactose and galactosides in Escherichia coli. I. Genetic determination and regulation of the methyl-galactoside permease. Ganesan AK, Rotman B. J Mol Biol; 1966 Mar 01; 16(1):42-50. PubMed ID: 5331243 [No Abstract] [Full Text] [Related]
20. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Daruwalla KR, Paxton AT, Henderson PJ. Biochem J; 1981 Dec 15; 200(3):611-27. PubMed ID: 6282256 [Abstract] [Full Text] [Related] Page: [Next] [New Search]