These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 15558598
1. Substrate range of acetohydroxy acid synthase I from Escherichia coli in the stereoselective synthesis of alpha-hydroxy ketones. Engel S, Vyazmensky M, Berkovich D, Barak Z, Chipman DM. Biotechnol Bioeng; 2004 Dec 30; 88(7):825-31. PubMed ID: 15558598 [Abstract] [Full Text] [Related]
2. Valine 375 and phenylalanine 109 confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli. Steinmetz A, Vyazmensky M, Meyer D, Barak ZE, Golbik R, Chipman DM, Tittmann K. Biochemistry; 2010 Jun 29; 49(25):5188-99. PubMed ID: 20504042 [Abstract] [Full Text] [Related]
3. Acetohydroxyacid synthase: a new enzyme for chiral synthesis of R-phenylacetylcarbinol. Engel S, Vyazmensky M, Geresh S, Barak Z, Chipman DM. Biotechnol Bioeng; 2003 Sep 30; 83(7):833-40. PubMed ID: 12889023 [Abstract] [Full Text] [Related]
4. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM. Biochemistry; 1996 Dec 17; 35(50):16282-91. PubMed ID: 8973202 [Abstract] [Full Text] [Related]
5. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. FEBS J; 2012 Jun 17; 279(11):1967-79. PubMed ID: 22443469 [Abstract] [Full Text] [Related]
6. Channeling behavior and activity models for Escherichia coli K-12 acetohydroxy acid synthases at physiological substrate levels. Herring PA, McKnight BL, Jackson JH. Biochem Biophys Res Commun; 1995 Feb 06; 207(1):48-54. PubMed ID: 7857304 [Abstract] [Full Text] [Related]
7. Significant catalytic roles for Glu47 and Gln 110 in all four of the C-C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II. Vyazmensky M, Steinmetz A, Meyer D, Golbik R, Barak Z, Tittmann K, Chipman DM. Biochemistry; 2011 Apr 19; 50(15):3250-60. PubMed ID: 21370850 [Abstract] [Full Text] [Related]
8. Monitoring the acetohydroxy acid synthase reaction and related carboligations by circular dichroism spectroscopy. Vinogradov M, Kaplun A, Vyazmensky M, Engel S, Golbik R, Tittmann K, Uhlemann K, Meshalkina L, Barak Z, Hübner G, Chipman DM. Anal Biochem; 2005 Jul 01; 342(1):126-33. PubMed ID: 15958189 [Abstract] [Full Text] [Related]
9. Column flow reactor using acetohydroxyacid synthase I from Escherichia coli as catalyst in continuous synthesis of R-phenylacetyl carbinol. Engel S, Vyazmensky M, Berkovich D, Barak Z, Merchuk J, Chipman DM. Biotechnol Bioeng; 2005 Mar 20; 89(6):733-40. PubMed ID: 15685598 [Abstract] [Full Text] [Related]
10. α,α'-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes. Galman JL, Steadman D, Bacon S, Morris P, Smith ME, Ward JM, Dalby PA, Hailes HC. Chem Commun (Camb); 2010 Oct 28; 46(40):7608-10. PubMed ID: 20835425 [Abstract] [Full Text] [Related]
11. Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. Barak Z, Chipman DM, Gollop N. J Bacteriol; 1987 Aug 28; 169(8):3750-6. PubMed ID: 3301814 [Abstract] [Full Text] [Related]
12. The carboligation reaction of acetohydroxyacid synthase II: steady-state intermediate distributions in wild type and mutants by NMR. Tittmann K, Vyazmensky M, Hübner G, Barak Z, Chipman DM. Proc Natl Acad Sci U S A; 2005 Jan 18; 102(3):553-8. PubMed ID: 15640355 [Abstract] [Full Text] [Related]
13. Rat hepatic microsomal aldehyde dehydrogenase. Identification of 3- and 4-substituted aromatic aldehydes as substrates of the enzyme. Martini R, Murray M. Chem Res Toxicol; 1996 Jan 18; 9(1):268-76. PubMed ID: 8924602 [Abstract] [Full Text] [Related]
14. Interactions between large and small subunits of different acetohydroxyacid synthase isozymes of Escherichia coli. Vyazmensky M, Zherdev Y, Slutzker A, Belenky I, Kryukov O, Barak Z, Chipman DM. Biochemistry; 2009 Sep 15; 48(36):8731-7. PubMed ID: 19653643 [Abstract] [Full Text] [Related]
16. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones. Hoyos P, Sinisterra JV, Molinari F, Alcántara AR, Domínguez de María P. Acc Chem Res; 2010 Feb 16; 43(2):288-99. PubMed ID: 19908854 [Abstract] [Full Text] [Related]
17. Benzaldehyde lyase-catalyzed enantioselective carboligation of aromatic aldehydes with mono- and dimethoxy acetaldehyde. Demir AS, Seşenoglu O, Dünkelmann P, Müller M. Org Lett; 2003 Jun 12; 5(12):2047-50. PubMed ID: 12790525 [Abstract] [Full Text] [Related]
18. (S)-Selective MenD variants from Escherichia coli provide access to new functionalized chiral α-hydroxy ketones. Westphal R, Waltzer S, Mackfeld U, Widmann M, Pleiss J, Beigi M, Müller M, Rother D, Pohl M. Chem Commun (Camb); 2013 Mar 11; 49(20):2061-3. PubMed ID: 23370615 [Abstract] [Full Text] [Related]
19. Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli. Gollop N, Damri B, Barak Z, Chipman DM. Biochemistry; 1989 Jul 25; 28(15):6310-7. PubMed ID: 2675968 [Abstract] [Full Text] [Related]
20. Highly anti-selective catalytic aldol reactions of amides with aldehydes. Saito S, Kobayashi S. J Am Chem Soc; 2006 Jul 12; 128(27):8704-5. PubMed ID: 16819844 [Abstract] [Full Text] [Related] Page: [Next] [New Search]