These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 15561819

  • 1. Intranasal interleukin-12 treatment promotes antimicrobial clearance and survival in pulmonary Francisella tularensis subsp. novicida infection.
    Pammit MA, Budhavarapu VN, Raulie EK, Klose KE, Teale JM, Arulanandam BP.
    Antimicrob Agents Chemother; 2004 Dec; 48(12):4513-9. PubMed ID: 15561819
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Intranasal interleukin-12 treatment for protection against respiratory infection with the Francisella tularensis live vaccine strain.
    Duckett NS, Olmos S, Durrant DM, Metzger DW.
    Infect Immun; 2005 Apr; 73(4):2306-11. PubMed ID: 15784575
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Intranasal vaccination with a defined attenuated Francisella novicida strain induces gamma interferon-dependent antibody-mediated protection against tularemia.
    Pammit MA, Raulie EK, Lauriano CM, Klose KE, Arulanandam BP.
    Infect Immun; 2006 Apr; 74(4):2063-71. PubMed ID: 16552035
    [Abstract] [Full Text] [Related]

  • 6. Nanoaerosols reduce required effective dose of liposomal levofloxacin against pulmonary murine Francisella tularensis subsp. novicida infection.
    Propst CN, Nwabueze AO, Kanev IL, Pepin RE, Gutting BW, Morozov VN, van Hoek ML.
    J Nanobiotechnology; 2016 Apr 18; 14():29. PubMed ID: 27090889
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an alphabeta T cell- and interferon gamma- dependent mechanism.
    Wayne Conlan J, Shen H, Kuolee R, Zhao X, Chen W.
    Vaccine; 2005 Mar 31; 23(19):2477-85. PubMed ID: 15752834
    [Abstract] [Full Text] [Related]

  • 9. Rapid dissemination of Francisella tularensis and the effect of route of infection.
    Ojeda SS, Wang ZJ, Mares CA, Chang TA, Li Q, Morris EG, Jerabek PA, Teale JM.
    BMC Microbiol; 2008 Dec 09; 8():215. PubMed ID: 19068128
    [Abstract] [Full Text] [Related]

  • 10. Post-exposure immunization against Francisella tularensis membrane proteins augments protective efficacy of gentamicin in a mouse model of pneumonic tularemia.
    Sutherland MD, Goodyear AW, Troyer RM, Chandler JC, Dow SW, Belisle JT.
    Vaccine; 2012 Jul 13; 30(33):4977-82. PubMed ID: 22652404
    [Abstract] [Full Text] [Related]

  • 11. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia.
    Crane DD, Scott DP, Bosio CM.
    PLoS One; 2012 Jul 13; 7(3):e33349. PubMed ID: 22428026
    [Abstract] [Full Text] [Related]

  • 12. Intranasal vaccination induces protective immunity against intranasal infection with virulent Francisella tularensis biovar A.
    Wu TH, Hutt JA, Garrison KA, Berliba LS, Zhou Y, Lyons CR.
    Infect Immun; 2005 May 13; 73(5):2644-54. PubMed ID: 15845466
    [Abstract] [Full Text] [Related]

  • 13. Early activation of NK cells after lung infection with the intracellular bacterium, Francisella tularensis LVS.
    López MC, Duckett NS, Baron SD, Metzger DW.
    Cell Immunol; 2004 May 13; 232(1-2):75-85. PubMed ID: 15922718
    [Abstract] [Full Text] [Related]

  • 14. Generation and characterization of hybridoma antibodies for immunotherapy of tularemia.
    Lu Z, Roche MI, Hui JH, Unal B, Felgner PL, Gulati S, Madico G, Sharon J.
    Immunol Lett; 2007 Oct 15; 112(2):92-103. PubMed ID: 17764754
    [Abstract] [Full Text] [Related]

  • 15. The Fluorocycline TP-271 Is Efficacious in Models of Aerosolized Francisella tularensis SCHU S4 Infection in BALB/c Mice and Cynomolgus Macaques.
    Grossman TH, Anderson MS, Christ D, Gooldy M, Henning LN, Heine HS, Kindt MV, Lin W, Siefkas-Patterson K, Radcliff AK, Tam VH, Sutcliffe JA.
    Antimicrob Agents Chemother; 2017 Aug 15; 61(8):. PubMed ID: 28559261
    [Abstract] [Full Text] [Related]

  • 16. Mouse model of oral infection with virulent type A Francisella tularensis.
    KuoLee R, Zhao X, Austin J, Harris G, Conlan JW, Chen W.
    Infect Immun; 2007 Apr 15; 75(4):1651-60. PubMed ID: 17242058
    [Abstract] [Full Text] [Related]

  • 17. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice.
    Ozanic M, Gobin I, Brezovec M, Marecic V, Trobonjaca Z, Abu Kwaik Y, Santic M.
    Front Cell Infect Microbiol; 2016 Apr 15; 6():56. PubMed ID: 27242974
    [Abstract] [Full Text] [Related]

  • 18. Role of neutrophils and NADPH phagocyte oxidase in host defense against respiratory infection with virulent Francisella tularensis in mice.
    KuoLee R, Harris G, Conlan JW, Chen W.
    Microbes Infect; 2011 May 15; 13(5):447-56. PubMed ID: 21277990
    [Abstract] [Full Text] [Related]

  • 19. Lung CD4-CD8- double-negative T cells are prominent producers of IL-17A and IFN-gamma during primary respiratory murine infection with Francisella tularensis live vaccine strain.
    Cowley SC, Meierovics AI, Frelinger JA, Iwakura Y, Elkins KL.
    J Immunol; 2010 May 15; 184(10):5791-801. PubMed ID: 20393138
    [Abstract] [Full Text] [Related]

  • 20. Inhibition of Francisella tularensis LVS infection of macrophages results in a reduced inflammatory response: evaluation of a therapeutic strategy for intracellular bacteria.
    D'Elia R, Jenner DC, Laws TR, Stokes MG, Jackson MC, Essex-Lopresti AE, Atkins HS.
    FEMS Immunol Med Microbiol; 2011 Aug 15; 62(3):348-61. PubMed ID: 21569124
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.