These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 15562997
1. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Hoelen TP, Reinhard M. Biodegradation; 2004 Dec; 15(6):395-403. PubMed ID: 15562997 [Abstract] [Full Text] [Related]
2. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F, Zhao D, Paul C. Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501 [Abstract] [Full Text] [Related]
3. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Freedman DL, Gossett JM. Appl Environ Microbiol; 1989 Sep; 55(9):2144-51. PubMed ID: 2552919 [Abstract] [Full Text] [Related]
4. Field application of glycerol to enhance reductive dechlorination of chlorinated ethenes and its impact on microbial community. Czinnerova M, Stejskal V, Markova K, Nosek J, Riha J, Sevcu A. Chemosphere; 2022 Dec; 309(Pt 1):136640. PubMed ID: 36181841 [Abstract] [Full Text] [Related]
5. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Aulenta F, Bianchi A, Majone M, Petrangeli Papini M, Potalivo M, Tandoi V. Environ Int; 2005 Feb; 31(2):185-90. PubMed ID: 15661281 [Abstract] [Full Text] [Related]
6. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Lee IS, Bae JH, McCarty PL. J Contam Hydrol; 2007 Oct 30; 94(1-2):76-85. PubMed ID: 17610987 [Abstract] [Full Text] [Related]
7. Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater. Nielsen RB, Keasling JD. Biotechnol Bioeng; 1999 Jan 20; 62(2):160-5. PubMed ID: 10099525 [Abstract] [Full Text] [Related]
8. [Dechlorination of chlorinated ethenes under different redox conditions]. Lu X, Li G, Zhang X, Zhang W. Huan Jing Ke Xue; 2002 Mar 20; 23(2):29-33. PubMed ID: 12048814 [Abstract] [Full Text] [Related]
9. Effect of vegetation in pilot-scale horizontal subsurface flow constructed wetlands treating sulphate rich groundwater contaminated with a low and high chlorinated hydrocarbon. Chen Z, Wu S, Braeckevelt M, Paschke H, Kästner M, Köser H, Kuschk P. Chemosphere; 2012 Oct 20; 89(6):724-31. PubMed ID: 22832338 [Abstract] [Full Text] [Related]
10. Long-term sustainability of reductive dechlorination reactions at chlorinated solvents sites. Newell CJ, Aziz CE. Biodegradation; 2004 Dec 20; 15(6):387-94. PubMed ID: 15562996 [Abstract] [Full Text] [Related]
11. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Vogel TM, McCarty PL. Appl Environ Microbiol; 1985 May 20; 49(5):1080-3. PubMed ID: 3923927 [Abstract] [Full Text] [Related]
12. Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities. Mao X, Polasko A, Alvarez-Cohen L. Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159790 [Abstract] [Full Text] [Related]
13. Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Yu S, Dolan ME, Semprini L. Environ Sci Technol; 2005 Jan 01; 39(1):195-205. PubMed ID: 15667095 [Abstract] [Full Text] [Related]
14. Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Heimann AC, Friis AK, Jakobsen R. Water Res; 2005 Sep 01; 39(15):3579-86. PubMed ID: 16085242 [Abstract] [Full Text] [Related]
15. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture. Cabirol N, Perrier J, Jacob F, Fouillet B, Chambon P. Bull Environ Contam Toxicol; 1996 May 01; 56(5):817-24. PubMed ID: 8661867 [No Abstract] [Full Text] [Related]
16. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Dong Y, Liang X, Krumholz LR, Philp RP, Butler EC. Environ Sci Technol; 2009 Feb 01; 43(3):690-7. PubMed ID: 19245003 [Abstract] [Full Text] [Related]
17. An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect. Skubal KL, Barcelona MJ, Adriaens P. J Contam Hydrol; 2001 May 01; 49(1-2):151-69. PubMed ID: 11351513 [Abstract] [Full Text] [Related]
18. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment. Lee J, Lee TK. J Microbiol Biotechnol; 2016 Jan 01; 26(1):120-9. PubMed ID: 26502734 [Abstract] [Full Text] [Related]
19. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study. Wang SY, Chen SC, Lin YC, Kuo YC, Chen JY, Kao CM. Chemosphere; 2016 Oct 01; 160():216-29. PubMed ID: 27376861 [Abstract] [Full Text] [Related]
20. A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment. Bælum J, Chambon JC, Scheutz C, Binning PJ, Laier T, Bjerg PL, Jacobsen CS. Water Res; 2013 May 01; 47(7):2467-78. PubMed ID: 23490098 [Abstract] [Full Text] [Related] Page: [Next] [New Search]