These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
468 related items for PubMed ID: 15569147
1. DNA binding properties of human DNA polymerase eta: implications for fidelity and polymerase switching of translesion synthesis. Kusumoto R, Masutani C, Shimmyo S, Iwai S, Hanaoka F. Genes Cells; 2004 Dec; 9(12):1139-50. PubMed ID: 15569147 [Abstract] [Full Text] [Related]
2. Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA. Nature; 2004 Mar 04; 428(6978):97-100. PubMed ID: 14999287 [Abstract] [Full Text] [Related]
3. The role of DNA polymerase eta in UV mutational spectra. Choi JH, Pfeifer GP. DNA Repair (Amst); 2005 Feb 03; 4(2):211-20. PubMed ID: 15590329 [Abstract] [Full Text] [Related]
4. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. Bassett E, Vaisman A, Havener JM, Masutani C, Hanaoka F, Chaney SG. Biochemistry; 2003 Dec 09; 42(48):14197-206. PubMed ID: 14640687 [Abstract] [Full Text] [Related]
5. DNA polymerases eta and kappa are responsible for error-free translesion DNA synthesis activity over a cis-syn thymine dimer in Xenopus laevis oocyte extracts. Yagi Y, Ogawara D, Iwai S, Hanaoka F, Akiyama M, Maki H. DNA Repair (Amst); 2005 Nov 21; 4(11):1252-69. PubMed ID: 16055392 [Abstract] [Full Text] [Related]
6. DNA polymerase eta, a key protein in translesion synthesis in human cells. Cruet-Hennequart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP. Subcell Biochem; 2010 Nov 21; 50():189-209. PubMed ID: 20012583 [Abstract] [Full Text] [Related]
7. Miscoding properties of 2'-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases. Yasui M, Suenaga E, Koyama N, Masutani C, Hanaoka F, Gruz P, Shibutani S, Nohmi T, Hayashi M, Honma M. J Mol Biol; 2008 Apr 04; 377(4):1015-23. PubMed ID: 18304575 [Abstract] [Full Text] [Related]
8. Replication of a cis-syn thymine dimer at atomic resolution. Ling H, Boudsocq F, Plosky BS, Woodgate R, Yang W. Nature; 2003 Aug 28; 424(6952):1083-7. PubMed ID: 12904819 [Abstract] [Full Text] [Related]
9. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha. Perrino FW, Blans P, Harvey S, Gelhaus SL, McGrath C, Akman SA, Jenkins GS, LaCourse WR, Fishbein JC. Chem Res Toxicol; 2003 Dec 28; 16(12):1616-23. PubMed ID: 14680376 [Abstract] [Full Text] [Related]
10. Enzymatic switching for efficient and accurate translesion DNA replication. McCulloch SD, Kokoska RJ, Chilkova O, Welch CM, Johansson E, Burgers PM, Kunkel TA. Nucleic Acids Res; 2004 Dec 28; 32(15):4665-75. PubMed ID: 15333698 [Abstract] [Full Text] [Related]
11. Measuring the fidelity of translesion DNA synthesis. McCulloch SD, Kunkel TA. Methods Enzymol; 2006 Dec 28; 408():341-55. PubMed ID: 16793379 [Abstract] [Full Text] [Related]
12. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta. McCulloch SD, Wood A, Garg P, Burgers PM, Kunkel TA. Biochemistry; 2007 Jul 31; 46(30):8888-96. PubMed ID: 17608453 [Abstract] [Full Text] [Related]
13. [Advances of study on human translesion synthesis DNA polymerase eta]. Hu GH, Zhuang ZX. Wei Sheng Yan Jiu; 2006 Nov 31; 35(6):808-11. PubMed ID: 17290774 [Abstract] [Full Text] [Related]
14. Effect of single DNA lesions on in vitro replication with DNA polymerase III holoenzyme. Comparison with other polymerases. Belguise-Valladier P, Maki H, Sekiguchi M, Fuchs RP. J Mol Biol; 1994 Feb 11; 236(1):151-64. PubMed ID: 8107100 [Abstract] [Full Text] [Related]
15. Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Kusumoto R, Masutani C, Iwai S, Hanaoka F. Biochemistry; 2002 May 14; 41(19):6090-9. PubMed ID: 11994004 [Abstract] [Full Text] [Related]
16. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF. Nature; 2000 Apr 27; 404(6781):1014-8. PubMed ID: 10801133 [Abstract] [Full Text] [Related]
17. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta. Carlson KD, Washington MT. Mol Cell Biol; 2005 Mar 27; 25(6):2169-76. PubMed ID: 15743815 [Abstract] [Full Text] [Related]
18. Chemical synthesis and translesion replication of a cis-syn cyclobutane thymine-uracil dimer. Takasawa K, Masutani C, Hanaoka F, Iwai S. Nucleic Acids Res; 2004 Mar 27; 32(5):1738-45. PubMed ID: 15020710 [Abstract] [Full Text] [Related]
19. Translesion synthesis past equine estrogen-derived 2'-deoxycytidine DNA adducts by human DNA polymerases eta and kappa. Suzuki N, Yasui M, Santosh Laxmi YR, Ohmori H, Hanaoka F, Shibutani S. Biochemistry; 2004 Sep 07; 43(35):11312-20. PubMed ID: 15366941 [Abstract] [Full Text] [Related]
20. Biochemical analysis of active site mutations of human polymerase η. Suarez SC, Beardslee RA, Toffton SM, McCulloch SD. Mutat Res; 2013 Sep 07; 745-746():46-54. PubMed ID: 23499771 [Abstract] [Full Text] [Related] Page: [Next] [New Search]