These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
645 related items for PubMed ID: 15572043
1. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. Michelakis ED, Thébaud B, Weir EK, Archer SL. J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043 [Abstract] [Full Text] [Related]
2. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Archer SL, Weir EK, Reeve HL, Michelakis E. Adv Exp Med Biol; 2000 Dec; 475():219-40. PubMed ID: 10849663 [Abstract] [Full Text] [Related]
4. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Archer SL, Wu XC, Thébaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED. Circ Res; 2004 Aug 06; 95(3):308-18. PubMed ID: 15217912 [Abstract] [Full Text] [Related]
5. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Dunham-Snary KJ, Hong ZG, Xiong PY, Del Paggio JC, Herr JE, Johri AM, Archer SL. Pflugers Arch; 2016 Jan 06; 468(1):43-58. PubMed ID: 26395471 [Abstract] [Full Text] [Related]
6. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system. Archer SL, Michelakis ED, Thébaud B, Bonnet S, Moudgil R, Wu XC, Weir EK. Novartis Found Symp; 2006 Jan 06; 272():157-71; discussion 171-5, 214-7. PubMed ID: 16686435 [Abstract] [Full Text] [Related]
7. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Dunham-Snary KJ, Wu D, Potus F, Sykes EA, Mewburn JD, Charles RL, Eaton P, Sultanian RA, Archer SL. Circ Res; 2019 Jun 07; 124(12):1727-1746. PubMed ID: 30922174 [Abstract] [Full Text] [Related]
8. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL. Chest; 2017 Jan 07; 151(1):181-192. PubMed ID: 27645688 [Abstract] [Full Text] [Related]
9. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Sommer N, Strielkov I, Pak O, Weissmann N. Eur Respir J; 2016 Jan 07; 47(1):288-303. PubMed ID: 26493804 [Abstract] [Full Text] [Related]
10. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Pozeg ZI, Michelakis ED, McMurtry MS, Thébaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, Archer SL. Circulation; 2003 Apr 22; 107(15):2037-44. PubMed ID: 12695303 [Abstract] [Full Text] [Related]
11. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Moudgil R, Michelakis ED, Archer SL. Microcirculation; 2006 Dec 22; 13(8):615-32. PubMed ID: 17085423 [Abstract] [Full Text] [Related]
12. Roles of different mitochondrial electron transport chain complexes in hypoxia-induced pulmonary vasoconstriction. Yang Z, Zhuan B, Yan Y, Jiang S, Wang T. Cell Biol Int; 2016 Feb 22; 40(2):188-95. PubMed ID: 26454147 [Abstract] [Full Text] [Related]
13. O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Michelakis ED, Rebeyka I, Wu X, Nsair A, Thébaud B, Hashimoto K, Dyck JR, Haromy A, Harry G, Barr A, Archer SL. Circ Res; 2002 Sep 20; 91(6):478-86. PubMed ID: 12242265 [Abstract] [Full Text] [Related]
14. An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Nagendran J, Stewart K, Hoskinson M, Archer SL. Curr Opin Anaesthesiol; 2006 Feb 20; 19(1):34-43. PubMed ID: 16547431 [Abstract] [Full Text] [Related]
15. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Bonnet S, Archer SL. Pharmacol Ther; 2007 Jul 20; 115(1):56-69. PubMed ID: 17583356 [Abstract] [Full Text] [Related]
16. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT. Circ Res; 2006 Oct 27; 99(9):970-8. PubMed ID: 17008601 [Abstract] [Full Text] [Related]
17. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors, and controversies. Archer S, Michelakis E. News Physiol Sci; 2002 Aug 27; 17():131-7. PubMed ID: 12136039 [Abstract] [Full Text] [Related]
18. The role of ion channels in hypoxic pulmonary vasoconstriction. Weir EK, Cabrera JA, Mahapatra S, Peterson DA, Hong Z. Adv Exp Med Biol; 2010 Aug 27; 661():3-14. PubMed ID: 20204720 [Abstract] [Full Text] [Related]
19. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction. Frazziano G, Moreno L, Moral-Sanz J, Menendez C, Escolano L, Gonzalez C, Villamor E, Alvarez-Sala JL, Cogolludo AL, Perez-Vizcaino F. J Cell Physiol; 2011 Oct 27; 226(10):2633-40. PubMed ID: 21792922 [Abstract] [Full Text] [Related]
20. Hypoxic pulmonary vasoconstriction--invited article. Mark Evans A, Ward JP. Adv Exp Med Biol; 2009 Oct 27; 648():351-60. PubMed ID: 19536499 [Abstract] [Full Text] [Related] Page: [Next] [New Search]