These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


369 related items for PubMed ID: 15574546

  • 1. The vascular relaxing effects of sevoflurane and isoflurane are more important in hypertensive than in normotensive rats.
    Yu J, Ogawa K, Tokinaga Y, Iwahashi S, Hatano Y.
    Can J Anaesth; 2004 Dec; 51(10):979-85. PubMed ID: 15574546
    [Abstract] [Full Text] [Related]

  • 2. Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation.
    Qi F, Ogawa K, Tokinaga Y, Uematsu N, Minonishi T, Hatano Y.
    Anesth Analg; 2009 Aug; 109(2):412-7. PubMed ID: 19608811
    [Abstract] [Full Text] [Related]

  • 3. The mechanism behind the inhibitory effect of isoflurane on angiotensin II-induced vascular contraction is different from that of sevoflurane.
    Ishikawa A, Ogawa K, Tokinaga Y, Uematsu N, Mizumoto K, Hatano Y.
    Anesth Analg; 2007 Jul; 105(1):97-102. PubMed ID: 17578963
    [Abstract] [Full Text] [Related]

  • 4. Sevoflurane inhibits angiotensin II-induced Rho kinase-mediated contraction of vascular smooth muscle from spontaneously hypertensive rat.
    Uematsu N, Ogawa K, Tokinaga Y, Tange K, Hatano Y.
    J Anesth; 2011 Jun; 25(3):398-404. PubMed ID: 21409351
    [Abstract] [Full Text] [Related]

  • 5. Comparison of the effects of isoflurane and sevoflurane on protein tyrosine phosphorylation-mediated vascular contraction.
    Yu J, Mizumoto K, Kakutani T, Hasegawa A, Ogawa K, Hatano Y.
    Acta Anaesthesiol Scand; 2005 Jul; 49(6):852-8. PubMed ID: 15954971
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Comparative effects of tramadol on vascular reactivity in normotensive and spontaneously hypertensive rats.
    Raimundo JM, Pontes LB, Antunes F, Sudo RT, Trachez MM, Zapata-Sudo G.
    Clin Exp Pharmacol Physiol; 2008 Oct; 35(10):1197-203. PubMed ID: 18518879
    [Abstract] [Full Text] [Related]

  • 9. Raloxifene modulates pulmonary vascular reactivity in spontaneously hypertensive rats.
    Chan YC, Leung FP, Yao X, Lau CW, Vanhoutte PM, Huang Y.
    J Cardiovasc Pharmacol; 2007 Jun; 49(6):355-61. PubMed ID: 17577099
    [Abstract] [Full Text] [Related]

  • 10. Vascular effects of 15-F2t-isoprostane in spontaneously hypertensive rats.
    Marlière S, Cracowski JL, Hakim A, Stanke-Labesque F, Hoffmann P, Bessard G.
    Can J Physiol Pharmacol; 2005 Jun; 83(6):453-8. PubMed ID: 16049544
    [Abstract] [Full Text] [Related]

  • 11. Enhanced slow-pressor response to angiotensin II in spontaneously hypertensive rats.
    Li P, Jackson EK.
    J Pharmacol Exp Ther; 1989 Dec; 251(3):909-21. PubMed ID: 2557422
    [Abstract] [Full Text] [Related]

  • 12. Oxidative stress induced by tert-butyl hydroperoxide causes vasoconstriction in the aorta from hypertensive and aged rats: role of cyclooxygenase-2 isoform.
    Garcia-Cohen EC, Marin J, Diez-Picazo LD, Baena AB, Salaices M, Rodriguez-Martinez MA.
    J Pharmacol Exp Ther; 2000 Apr; 293(1):75-81. PubMed ID: 10734155
    [Abstract] [Full Text] [Related]

  • 13. Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists.
    Cosentino F, Savoia C, De Paolis P, Francia P, Russo A, Maffei A, Venturelli V, Schiavoni M, Lembo G, Volpe M.
    Am J Hypertens; 2005 Apr; 18(4 Pt 1):493-9. PubMed ID: 15831358
    [Abstract] [Full Text] [Related]

  • 14. Contractions induced by potassium-free solution and potassium relaxation in vascular smooth muscle of hypertensive and normotensive rats.
    Arvola P, Pörsti I, Vuorinen P, Pekki A, Vapaatalo H.
    Br J Pharmacol; 1992 May; 106(1):157-65. PubMed ID: 1504724
    [Abstract] [Full Text] [Related]

  • 15. [Role of endothelial nitric oxide synthases in the contractile response to angiotensin II of the aorta in rats. Wistar Kyoto and hypertensive rats].
    Zerrouk A, Auguet M, Chabrier PE, Braquet P.
    Arch Mal Coeur Vaiss; 1994 Aug; 87(8):1001-4. PubMed ID: 7538750
    [Abstract] [Full Text] [Related]

  • 16. Role of endothelium on the effects of neuropeptide Y in mesenteric resistance arteries of spontaneously hypertensive and Wistar-Kyoto normotensive rats.
    Andriantsitohaina R, Stoclet JC, Bukoski RD.
    J Pharmacol Exp Ther; 1991 Apr; 257(1):276-81. PubMed ID: 2019991
    [Abstract] [Full Text] [Related]

  • 17. Direct effects of quercetin on impaired reactivity of spontaneously hypertensive rat aortae: comparative study with ascorbic acid.
    Ajay M, Achike FI, Mustafa AM, Mustafa MR.
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):345-50. PubMed ID: 16620299
    [Abstract] [Full Text] [Related]

  • 18. Endothelial regulation of cyclic GMP and vascular responses in hypertension.
    Shirasaki Y, Kolm P, Nickols GA, Lee TJ.
    J Pharmacol Exp Ther; 1988 Apr; 245(1):53-8. PubMed ID: 2834546
    [Abstract] [Full Text] [Related]

  • 19. Increased oxidative stress impairs endothelial modulation of contractions in arteries from spontaneously hypertensive rats.
    Miyagawa K, Ohashi M, Yamashita S, Kojima M, Sato K, Ueda R, Dohi Y.
    J Hypertens; 2007 Feb; 25(2):415-21. PubMed ID: 17211249
    [Abstract] [Full Text] [Related]

  • 20. Changes in the endothelial cyclooxygenase pathway in resistance arteries of spontaneously hypertensive rats.
    Takase H, Dohi Y, Kojima M, Sato K.
    J Cardiovasc Pharmacol; 1994 Feb; 23(2):326-30. PubMed ID: 7511765
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.