These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


604 related items for PubMed ID: 15576167

  • 1. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering.
    Yao J, Radin S, S Leboy P, Ducheyne P.
    Biomaterials; 2005 May; 26(14):1935-43. PubMed ID: 15576167
    [Abstract] [Full Text] [Related]

  • 2. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites.
    Lu HH, Tang A, Oh SC, Spalazzi JP, Dionisio K.
    Biomaterials; 2005 Nov; 26(32):6323-34. PubMed ID: 15919111
    [Abstract] [Full Text] [Related]

  • 3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH, El-Amin SF, Scott KD, Laurencin CT.
    J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560
    [Abstract] [Full Text] [Related]

  • 4. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X, Miao X.
    J Biomater Appl; 2007 Apr 01; 21(4):351-74. PubMed ID: 16543281
    [Abstract] [Full Text] [Related]

  • 5. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS.
    Tissue Eng; 2006 Oct 01; 12(10):2997-3006. PubMed ID: 17506618
    [Abstract] [Full Text] [Related]

  • 6. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J, Pawlik J, Cholewa-Kowalska K, Tylko G, Pamula E, Niedzwiedzki L, Szuta M, Laczka M, Osyczka AM.
    Biomed Mater; 2014 Oct 20; 9(6):065001. PubMed ID: 25329328
    [Abstract] [Full Text] [Related]

  • 7. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L.
    J Tissue Eng Regen Med; 2015 Aug 20; 9(8):961-72. PubMed ID: 23255530
    [Abstract] [Full Text] [Related]

  • 8. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects.
    El-Ghannam A, Amin H, Nasr T, Shama A.
    Int J Oral Maxillofac Implants; 2004 Aug 20; 19(2):184-91. PubMed ID: 15101588
    [Abstract] [Full Text] [Related]

  • 9. Fabrication and characterization of poly(lactic-co-glycolic acid) microsphere/amorphous calcium phosphate scaffolds.
    Popp JR, Laflin KE, Love BJ, Goldstein AS.
    J Tissue Eng Regen Med; 2012 Jan 20; 6(1):12-20. PubMed ID: 21312335
    [Abstract] [Full Text] [Related]

  • 10. Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects.
    Ruhé PQ, Hedberg-Dirk EL, Padron NT, Spauwen PH, Jansen JA, Mikos AG.
    Tissue Eng; 2006 Apr 20; 12(4):789-800. PubMed ID: 16674292
    [Abstract] [Full Text] [Related]

  • 11. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation.
    Renno AC, Nejadnik MR, van de Watering FC, Crovace MC, Zanotto ED, Hoefnagels JP, Wolke JG, Jansen JA, van den Beucken JJ.
    J Biomed Mater Res A; 2013 Aug 20; 101(8):2365-73. PubMed ID: 23364896
    [Abstract] [Full Text] [Related]

  • 12. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y.
    Biofabrication; 2010 Jun 20; 2(2):025002. PubMed ID: 20811130
    [Abstract] [Full Text] [Related]

  • 13. The effect of bioactive glasses on bone marrow stromal cells differentiation.
    Bosetti M, Cannas M.
    Biomaterials; 2005 Jun 20; 26(18):3873-9. PubMed ID: 15626435
    [Abstract] [Full Text] [Related]

  • 14. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F.
    Biomaterials; 2005 Dec 20; 26(36):7564-71. PubMed ID: 16005963
    [Abstract] [Full Text] [Related]

  • 15. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T, Miyaji H, Otani K, Inoue K, Nakane K, Nishimura H, Ibara A, Shimada A, Ogawa K, Nishida E, Sugaya T, Sun L, Fugetsu B, Kawanami M.
    J Periodontal Res; 2015 Apr 20; 50(2):265-73. PubMed ID: 24966062
    [Abstract] [Full Text] [Related]

  • 16. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.
    Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG.
    Biomaterials; 2005 Mar 20; 26(9):971-7. PubMed ID: 15369685
    [Abstract] [Full Text] [Related]

  • 17. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold.
    Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS.
    Biomaterials; 2007 Jun 20; 28(17):2763-71. PubMed ID: 17350678
    [Abstract] [Full Text] [Related]

  • 18. Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites.
    Ruhé PQ, Hedberg EL, Padron NT, Spauwen PH, Jansen JA, Mikos AG.
    J Biomed Mater Res A; 2005 Sep 15; 74(4):533-44. PubMed ID: 16041795
    [Abstract] [Full Text] [Related]

  • 19. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH, Wang XL, Xie XH, Zheng LZ, Yao D, Wang DP, Leng Y, Zhang G, Qin L.
    Acta Biomater; 2012 Aug 15; 8(8):3128-37. PubMed ID: 22543006
    [Abstract] [Full Text] [Related]

  • 20. Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds.
    Kuo YC, Yeh CF.
    Colloids Surf B Biointerfaces; 2011 Feb 01; 82(2):624-31. PubMed ID: 21074381
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.