These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


605 related items for PubMed ID: 15576168

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. A novel injectable approach for cartilage formation in vivo using PLG microspheres.
    Mercier NR, Costantino HR, Tracy MA, Bonassar LJ.
    Ann Biomed Eng; 2004 Mar; 32(3):418-29. PubMed ID: 15095816
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness.
    Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T.
    J Biomed Mater Res A; 2003 Dec 15; 67(4):1170-80. PubMed ID: 14624503
    [Abstract] [Full Text] [Related]

  • 6. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH, Ko YJ.
    Laryngoscope; 2006 Oct 15; 116(10):1829-34. PubMed ID: 17016212
    [Abstract] [Full Text] [Related]

  • 7. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function.
    Chun KW, Yoo HS, Yoon JJ, Park TG.
    Biotechnol Prog; 2004 Oct 15; 20(6):1797-801. PubMed ID: 15575714
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE, Pattison MA, Park K, Webster TJ.
    Biomaterials; 2005 Jun 15; 26(16):3075-82. PubMed ID: 15603802
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P.
    Biomaterials; 2005 Feb 15; 26(4):419-31. PubMed ID: 15275816
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA.
    Biomaterials; 2004 Aug 15; 25(18):4149-61. PubMed ID: 15046905
    [Abstract] [Full Text] [Related]

  • 16. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition.
    Miot S, Woodfield T, Daniels AU, Suetterlin R, Peterschmitt I, Heberer M, van Blitterswijk CA, Riesle J, Martin I.
    Biomaterials; 2005 May 15; 26(15):2479-89. PubMed ID: 15585250
    [Abstract] [Full Text] [Related]

  • 17. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice.
    Wu W, Feng X, Mao T, Feng X, Ouyang HW, Zhao G, Chen F.
    Br J Oral Maxillofac Surg; 2007 Jun 15; 45(4):272-8. PubMed ID: 17097777
    [Abstract] [Full Text] [Related]

  • 18. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage.
    Kang SW, Yoo SP, Kim BS.
    Biomed Mater Eng; 2007 Jun 15; 17(5):269-76. PubMed ID: 17851169
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen.
    Yen HJ, Tseng CS, Hsu SH, Tsai CL.
    Biomed Microdevices; 2009 Jun 15; 11(3):615-24. PubMed ID: 19104940
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.