These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


433 related items for PubMed ID: 15579140

  • 1. Origin of acetylcholinesterase in the neuromuscular junction formed in the in vitro innervated human muscle.
    Jevsek M, Mars T, Mis K, Grubic Z.
    Eur J Neurosci; 2004 Dec; 20(11):2865-71. PubMed ID: 15579140
    [Abstract] [Full Text] [Related]

  • 2. Expression and distribution of acetylcholinesterase among the cellular components of the neuromuscular junction formed in human myotube in vitro.
    Mis K, Mars T, Jevsek M, Strasek H, Golicnik M, Brecelj J, Komel R, King MP, Miranda AF, Grubic Z.
    Chem Biol Interact; 2005 Dec 15; 157-158():29-35. PubMed ID: 16256091
    [Abstract] [Full Text] [Related]

  • 3. Restricted localization of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase at the neuromuscular junctions--contribution and expression from motor neurons.
    Leung KW, Xie HQ, Chen VP, Mok MK, Chu GK, Choi RC, Tsim KW.
    FEBS J; 2009 Jun 15; 276(11):3031-42. PubMed ID: 19490106
    [Abstract] [Full Text] [Related]

  • 4. Acetylcholinesterase and agrin: different functions, similar expression patterns, multiple roles.
    Mis K, Matkovic U, Pirkmajer S, Sciancalepore M, Lorenzon P, Mars T, Grubic Z.
    Chem Biol Interact; 2013 Mar 25; 203(1):297-301. PubMed ID: 23117006
    [Abstract] [Full Text] [Related]

  • 5. Subcellular localization of the glutamate transporters GLAST and GLT at the neuromuscular junction in rodents.
    Rinholm JE, Slettaløkken G, Marcaggi P, Skare Ø, Storm-Mathisen J, Bergersen LH.
    Neuroscience; 2007 Mar 16; 145(2):579-91. PubMed ID: 17289278
    [Abstract] [Full Text] [Related]

  • 6. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions.
    Tung EK, Choi RC, Siow NL, Jiang JX, Ling KK, Simon J, Barnard EA, Tsim KW.
    Mol Pharmacol; 2004 Oct 16; 66(4):794-806. PubMed ID: 15258260
    [Abstract] [Full Text] [Related]

  • 7. Intracellular expression profiling by laser capture microdissection: three novel components of the neuromuscular junction.
    Nazarian J, Bouri K, Hoffman EP.
    Physiol Genomics; 2005 Mar 21; 21(1):70-80. PubMed ID: 15623565
    [Abstract] [Full Text] [Related]

  • 8. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle.
    Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S.
    Molecules; 2017 Aug 27; 22(9):. PubMed ID: 28846617
    [Abstract] [Full Text] [Related]

  • 9. Expression of cAMP-responsive element binding proteins (CREBs) in fast- and slow-twitch muscles: a signaling pathway to account for the synaptic expression of collagen-tailed subunit (ColQ) of acetylcholinesterase at the rat neuromuscular junction.
    Choi RC, Chen VP, Luk WK, Yung AW, Ng AH, Dong TT, Tsim KW.
    Chem Biol Interact; 2013 Mar 25; 203(1):282-6. PubMed ID: 23159887
    [Abstract] [Full Text] [Related]

  • 10. Differences in the localization of the postsynaptic nitric oxide synthase I and acetylcholinesterase suggest a heterogeneity of neuromuscular junctions in rat and mouse skeletal muscles.
    Grozdanovic Z, Christova T, Gossrau R.
    Acta Histochem; 1997 Mar 25; 99(1):47-53. PubMed ID: 9150796
    [Abstract] [Full Text] [Related]

  • 11. Synaptogenetic mechanisms controlling postsynaptic differentiation of the neuromuscular junction are nerve-dependent in human and nerve-independent in mouse C2C12 muscle cultures.
    Gajsek N, Jevsek M, Mars T, Mis K, Pirkmajer S, Brecelj J, Grubic Z.
    Chem Biol Interact; 2008 Sep 25; 175(1-3):50-7. PubMed ID: 18691702
    [Abstract] [Full Text] [Related]

  • 12. Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, alpha-bungarotoxin, and acetylcholinesterase.
    Kallmünzer B, Sörensen B, Neuhuber WL, Wörl J.
    Cell Tissue Res; 2006 May 25; 324(2):181-8. PubMed ID: 16437206
    [Abstract] [Full Text] [Related]

  • 13. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E, Bernard V, Minic J, Chatonnet A, Krejci E, Molgó J.
    Life Sci; 2007 May 30; 80(24-25):2380-5. PubMed ID: 17467011
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Structural and functional organization of synaptic acetylcholinesterase.
    Aldunate R, Casar JC, Brandan E, Inestrosa NC.
    Brain Res Brain Res Rev; 2004 Dec 30; 47(1-3):96-104. PubMed ID: 15572165
    [Abstract] [Full Text] [Related]

  • 16. Developmental consequences of the ColQ/MuSK interactions.
    Karmouch J, Dobbertin A, Sigoillot S, Legay C.
    Chem Biol Interact; 2013 Mar 25; 203(1):287-91. PubMed ID: 23089045
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Cholinesterases regulation in the absence of ColQ.
    Sigoillot SM, Bourgeois F, Legay C.
    Chem Biol Interact; 2010 Sep 06; 187(1-3):84-9. PubMed ID: 20153305
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.