These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


626 related items for PubMed ID: 15581601

  • 1. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase.
    Cho H, Hamza A, Zhan CG, Tai HH.
    Arch Biochem Biophys; 2005 Jan 15; 433(2):447-53. PubMed ID: 15581601
    [Abstract] [Full Text] [Related]

  • 2. Critical residues for the coenzyme specificity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase.
    Cho H, Oliveira MA, Tai HH.
    Arch Biochem Biophys; 2003 Nov 15; 419(2):139-46. PubMed ID: 14592457
    [Abstract] [Full Text] [Related]

  • 3. Role of glutamine 148 of human 15-hydroxyprostaglandin dehydrogenase in catalytic oxidation of prostaglandin E2.
    Cho H, Huang L, Hamza A, Gao D, Zhan CG, Tai HH.
    Bioorg Med Chem; 2006 Oct 01; 14(19):6486-91. PubMed ID: 16828555
    [Abstract] [Full Text] [Related]

  • 4. Threonine 188 is critical for interaction with NAD+ in human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase.
    Zhou H, Tai HH.
    Biochem Biophys Res Commun; 1999 Apr 13; 257(2):414-7. PubMed ID: 10198228
    [Abstract] [Full Text] [Related]

  • 5. Site-directed mutagenesis of the conserved serine 138 of human placental NAD+-dependent 15-hydroxyprostaglandin dehydrogenase to an alanine results in an inactive enzyme.
    Ensor CM, Tai HH.
    Biochem Biophys Res Commun; 1996 Mar 18; 220(2):330-3. PubMed ID: 8645305
    [Abstract] [Full Text] [Related]

  • 6. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P, Colman RF.
    Arch Biochem Biophys; 2002 May 01; 401(1):81-90. PubMed ID: 12054490
    [Abstract] [Full Text] [Related]

  • 7. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM, McIntosh EM, Muscat GE.
    J Mol Biol; 1999 Apr 30; 288(2):275-87. PubMed ID: 10329142
    [Abstract] [Full Text] [Related]

  • 8. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR, Dekker EE.
    Arch Biochem Biophys; 1998 Mar 01; 351(1):8-16. PubMed ID: 9500838
    [Abstract] [Full Text] [Related]

  • 9. Peptidyl-prolyl cis-trans isomerase of Bacillus subtilis: identification of residues involved in cyclosporin A affinity and catalytic efficiency.
    Göthel SF, Herrler M, Marahiel MA.
    Biochemistry; 1996 Mar 19; 35(11):3636-40. PubMed ID: 8639516
    [Abstract] [Full Text] [Related]

  • 10. Threonine 11 of human NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase may interact with NAD(+) during catalysis.
    Cho H, Tai HH.
    Prostaglandins Leukot Essent Fatty Acids; 2002 Mar 19; 66(5-6):505-9. PubMed ID: 12144871
    [Abstract] [Full Text] [Related]

  • 11. Cysteine 182 is essential for enzymatic activity of human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase.
    Ensor CM, Tai HH.
    Arch Biochem Biophys; 1996 Sep 01; 333(1):117-20. PubMed ID: 8806761
    [Abstract] [Full Text] [Related]

  • 12. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant.
    Hurley JH, Chen R, Dean AM.
    Biochemistry; 1996 May 07; 35(18):5670-8. PubMed ID: 8639526
    [Abstract] [Full Text] [Related]

  • 13. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii.
    Friesen JA, Lawrence CM, Stauffacher CV, Rodwell VW.
    Biochemistry; 1996 Sep 17; 35(37):11945-50. PubMed ID: 8810898
    [Abstract] [Full Text] [Related]

  • 14. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC, Craig SP, Eakin AE.
    Biochemistry; 1998 Mar 10; 37(10):3491-8. PubMed ID: 9521670
    [Abstract] [Full Text] [Related]

  • 15. Redesign of substrate-selectivity determining modules of glutathione transferase A1-1 installs high catalytic efficiency with toxic alkenal products of lipid peroxidation.
    Nilsson LO, Gustafsson A, Mannervik B.
    Proc Natl Acad Sci U S A; 2000 Aug 15; 97(17):9408-12. PubMed ID: 10900265
    [Abstract] [Full Text] [Related]

  • 16. Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1.
    Chern MK, Wu TC, Hsieh CH, Chou CC, Liu LF, Kuan IC, Yeh YH, Hsiao CD, Tam MF.
    J Mol Biol; 2000 Jul 28; 300(5):1257-69. PubMed ID: 10903867
    [Abstract] [Full Text] [Related]

  • 17. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY, Liu JH, Fang YW, Hung HC.
    Biochem J; 2009 May 13; 420(2):201-9. PubMed ID: 19236308
    [Abstract] [Full Text] [Related]

  • 18. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase.
    Zhang L, Ahvazi B, Szittner R, Vrielink A, Meighen E.
    Biochemistry; 1999 Aug 31; 38(35):11440-7. PubMed ID: 10471295
    [Abstract] [Full Text] [Related]

  • 19. Orthogonal protein purification--expanding the repertoire of GST fusion systems.
    Viljanen J, Larsson J, Broo KS.
    Protein Expr Purif; 2008 Jan 31; 57(1):17-26. PubMed ID: 17964806
    [Abstract] [Full Text] [Related]

  • 20. Structure/function aspects of human 3beta-hydroxysteroid dehydrogenase.
    Thomas JL, Duax WL, Addlagatta A, Kacsoh B, Brandt SE, Norris WB.
    Mol Cell Endocrinol; 2004 Feb 27; 215(1-2):73-82. PubMed ID: 15026177
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.