These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. NAD+-dependent DNA ligases of Mycobacterium tuberculosis and Streptomyces coelicolor. Wilkinson A, Sayer H, Bullard D, Smith A, Day J, Kieser T, Bowater R. Proteins; 2003 May 15; 51(3):321-6. PubMed ID: 12696044 [Abstract] [Full Text] [Related]
8. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA). Zhu H, Shuman S. J Biol Chem; 2005 Apr 01; 280(13):12137-44. PubMed ID: 15671015 [Abstract] [Full Text] [Related]
11. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Georlette D, Jónsson ZO, Van Petegem F, Chessa J, Van Beeumen J, Hübscher U, Gerday C. Eur J Biochem; 2000 Jun 01; 267(12):3502-12. PubMed ID: 10848966 [Abstract] [Full Text] [Related]
12. Salt bridges at the subdomain interfaces of the adenylation domain and active-site residues of Mycobacterium tuberculosis NAD+-dependent DNA ligase A (MtbLigA) are important for the initial steps of nick-sealing activity. Afsar M, Shukla A, Kumar N, Ramachandran R. Acta Crystallogr D Struct Biol; 2021 Jun 01; 77(Pt 6):776-789. PubMed ID: 34076591 [Abstract] [Full Text] [Related]
18. Mutational analysis of Escherichia coli DNA ligase identifies amino acids required for nick-ligation in vitro and for in vivo complementation of the growth of yeast cells deleted for CDC9 and LIG4. Sriskanda V, Schwer B, Ho CK, Shuman S. Nucleic Acids Res; 1999 Oct 15; 27(20):3953-63. PubMed ID: 10497258 [Abstract] [Full Text] [Related]
19. Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones. Brötz-Oesterhelt H, Knezevic I, Bartel S, Lampe T, Warnecke-Eberz U, Ziegelbauer K, Häbich D, Labischinski H. J Biol Chem; 2003 Oct 10; 278(41):39435-42. PubMed ID: 12867414 [Abstract] [Full Text] [Related]