These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. Oyane A, Uchida M, Yokoyama Y, Choong C, Triffitt J, Ito A. J Biomed Mater Res A; 2005 Oct 01; 75(1):138-45. PubMed ID: 16044403 [Abstract] [Full Text] [Related]
4. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute. Rhee SH, Lee YK, Lim BS, Yoo JJ, Kim HJ. Biomacromolecules; 2004 Oct 01; 5(4):1575-9. PubMed ID: 15244480 [Abstract] [Full Text] [Related]
5. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer. Rhee SH. J Biomed Mater Res A; 2003 Dec 15; 67(4):1131-8. PubMed ID: 14624498 [Abstract] [Full Text] [Related]
7. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material. Holmbom J, Södergård A, Ekholm E, Märtson M, Kuusilehto A, Saukko P, Penttinen R. J Biomed Mater Res A; 2005 Nov 01; 75(2):308-15. PubMed ID: 16059893 [Abstract] [Full Text] [Related]
13. Mechanism of apatite formation on pure titanium treated with alkaline solution. Wang CX, Zhou X, Wang M. Biomed Mater Eng; 2004 Feb 20; 14(1):5-11. PubMed ID: 14757948 [Abstract] [Full Text] [Related]
14. Coating of bone-like apatite for development of bioactive materials for bone reconstruction. Kamitakahara M, Ohtsuki C, Miyazaki T. Biomed Mater; 2007 Dec 20; 2(4):R17-23. PubMed ID: 18458474 [Abstract] [Full Text] [Related]
15. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics]. Ji J, Ran J, Gou L, Wang F, Sun L. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug 20; 21(4):531-5. PubMed ID: 15357425 [Abstract] [Full Text] [Related]
16. The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30). Qu X, Cui W, Yang F, Min C, Shen H, Bei J, Wang S. Biomaterials; 2007 Jan 20; 28(1):9-18. PubMed ID: 16952394 [Abstract] [Full Text] [Related]
17. Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process. Kawai T, Ohtsuki C, Kamitakahara M, Miyazaki T, Tanihara M, Sakaguchi Y, Konagaya S. Biomaterials; 2004 Aug 20; 25(19):4529-34. PubMed ID: 15120497 [Abstract] [Full Text] [Related]
18. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, Schantz JT. Int J Oral Maxillofac Surg; 2006 Oct 20; 35(10):928-34. PubMed ID: 16762529 [Abstract] [Full Text] [Related]
19. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation. Choong C, Yuan S, Thian ES, Oyane A, Triffitt J. J Biomed Mater Res A; 2012 Feb 20; 100(2):353-61. PubMed ID: 22065559 [Abstract] [Full Text] [Related]
20. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Chen XB, Li YC, Du Plessis J, Hodgson PD, Wen C. Acta Biomater; 2009 Jun 20; 5(5):1808-20. PubMed ID: 19223253 [Abstract] [Full Text] [Related] Page: [Next] [New Search]