These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


701 related items for PubMed ID: 15585282

  • 21. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL.
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [Abstract] [Full Text] [Related]

  • 22. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V, Kaplan D.
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [Abstract] [Full Text] [Related]

  • 23. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning.
    Zhou J, Cao C, Ma X.
    Int J Biol Macromol; 2009 Dec 01; 45(5):504-10. PubMed ID: 19772871
    [Abstract] [Full Text] [Related]

  • 24. Preparation and characterization of fibroin/hyaluronic acid composite scaffold.
    Ren YJ, Zhou ZY, Liu BF, Xu QY, Cui FZ.
    Int J Biol Macromol; 2009 May 01; 44(4):372-8. PubMed ID: 19428469
    [Abstract] [Full Text] [Related]

  • 25. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration.
    Gobin AS, Froude VE, Mathur AB.
    J Biomed Mater Res A; 2005 Sep 01; 74(3):465-73. PubMed ID: 15983992
    [Abstract] [Full Text] [Related]

  • 26. Comparison of different fabrication techniques used for processing 3-dimensional, porous, biodegradable scaffolds from modified starch for bone tissue engineering.
    Kunjachan V, Subramanian A, Hanna M, Guan JJ.
    Biomed Sci Instrum; 2004 Sep 01; 40():129-35. PubMed ID: 15133947
    [Abstract] [Full Text] [Related]

  • 27. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB, Kundu SC.
    Biomaterials; 2009 Oct 01; 30(28):5019-30. PubMed ID: 19577292
    [Abstract] [Full Text] [Related]

  • 28. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7.
    Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G, Xiao Y.
    Acta Biomater; 2010 Aug 01; 6(8):3021-8. PubMed ID: 20188872
    [Abstract] [Full Text] [Related]

  • 29. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method.
    Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J.
    Acta Biomater; 2010 Mar 01; 6(3):1167-77. PubMed ID: 19733699
    [Abstract] [Full Text] [Related]

  • 30. Structure and properties of silk hydrogels.
    Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL.
    Biomacromolecules; 2004 Mar 01; 5(3):786-92. PubMed ID: 15132662
    [Abstract] [Full Text] [Related]

  • 31. Macroporous silk fibroin cryogels.
    Ak F, Oztoprak Z, Karakutuk I, Okay O.
    Biomacromolecules; 2013 Mar 11; 14(3):719-27. PubMed ID: 23360211
    [Abstract] [Full Text] [Related]

  • 32. In vivo degradation of three-dimensional silk fibroin scaffolds.
    Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kirker-Head C, Kaplan DL.
    Biomaterials; 2008 Mar 11; 29(24-25):3415-28. PubMed ID: 18502501
    [Abstract] [Full Text] [Related]

  • 33. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell.
    She Z, Jin C, Huang Z, Zhang B, Feng Q, Xu Y.
    J Mater Sci Mater Med; 2008 Dec 11; 19(12):3545-53. PubMed ID: 18622765
    [Abstract] [Full Text] [Related]

  • 34. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL.
    Biomaterials; 2006 Sep 11; 27(25):4434-42. PubMed ID: 16677707
    [Abstract] [Full Text] [Related]

  • 35. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR, Marin MA, Surampudi V, Subia B, Rao RR, Kundu SC, McHugh MA.
    Biomed Mater; 2015 May 08; 10(3):035002. PubMed ID: 25953953
    [Abstract] [Full Text] [Related]

  • 36. Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori.
    Wadbua P, Promdonkoy B, Maensiri S, Siri S.
    Int J Biol Macromol; 2010 Jun 08; 46(5):493-501. PubMed ID: 20338193
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth.
    Gupta MK, Khokhar SK, Phillips DM, Sowards LA, Drummy LF, Kadakia MP, Naik RR.
    Langmuir; 2007 Jan 30; 23(3):1315-9. PubMed ID: 17241052
    [Abstract] [Full Text] [Related]

  • 39. Cell proliferation and migration in silk fibroin 3D scaffolds.
    Mandal BB, Kundu SC.
    Biomaterials; 2009 May 30; 30(15):2956-65. PubMed ID: 19249094
    [Abstract] [Full Text] [Related]

  • 40. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold.
    Wang S, Zhang Y, Wang H, Yin G, Dong Z.
    Biomacromolecules; 2009 Aug 10; 10(8):2240-4. PubMed ID: 19722559
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 36.