These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


391 related items for PubMed ID: 15590814

  • 21. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2.
    Yang H, Tong J, Lee CW, Ha S, Eom SH, Im YJ.
    Nat Commun; 2015 Feb 06; 6():6129. PubMed ID: 25655993
    [Abstract] [Full Text] [Related]

  • 22. Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles.
    Valachovic M, Bareither BM, Shah Alam Bhuiyan M, Eckstein J, Barbuch R, Balderes D, Wilcox L, Sturley SL, Dickson RC, Bard M.
    Genetics; 2006 Aug 06; 173(4):1893-908. PubMed ID: 16702413
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Sterol uptake in Candida glabrata: rescue of sterol auxotrophic strains.
    Bard M, Sturm AM, Pierson CA, Brown S, Rogers KM, Nabinger S, Eckstein J, Barbuch R, Lees ND, Howell SA, Hazen KC.
    Diagn Microbiol Infect Dis; 2005 Aug 06; 52(4):285-93. PubMed ID: 15893902
    [Abstract] [Full Text] [Related]

  • 26. A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae.
    Davies BS, Rine J.
    Genetics; 2006 Sep 06; 174(1):191-201. PubMed ID: 16783004
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. A Genome-Wide Screen of Deletion Mutants in the Filamentous Saccharomyces cerevisiae Background Identifies Ergosterol as a Direct Trigger of Macrophage Pyroptosis.
    Koselny K, Mutlu N, Minard AY, Kumar A, Krysan DJ, Wellington M.
    mBio; 2018 Jul 31; 9(4):. PubMed ID: 30065091
    [Abstract] [Full Text] [Related]

  • 30. Efflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae.
    Kontoyiannis DP.
    J Antimicrob Chemother; 2000 Aug 31; 46(2):199-203. PubMed ID: 10933641
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Cytoplasmic localization of sterol transcription factors Upc2p and Ecm22p in S. cerevisiae.
    Marie C, Leyde S, White TC.
    Fungal Genet Biol; 2008 Oct 31; 45(10):1430-8. PubMed ID: 18675371
    [Abstract] [Full Text] [Related]

  • 36. Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans.
    Pierson CA, Eckstein J, Barbuch R, Bard M.
    Med Mycol; 2004 Aug 31; 42(4):385-9. PubMed ID: 15473366
    [Abstract] [Full Text] [Related]

  • 37. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors.
    Henry KW, Nickels JT, Edlind TD.
    Antimicrob Agents Chemother; 2000 Oct 31; 44(10):2693-700. PubMed ID: 10991846
    [Abstract] [Full Text] [Related]

  • 38. Disruption of the Candida albicans CYB5 gene results in increased azole sensitivity.
    Rogers KM, Pierson CA, Culbertson NT, Mo C, Sturm AM, Eckstein J, Barbuch R, Lees ND, Bard M.
    Antimicrob Agents Chemother; 2004 Sep 31; 48(9):3425-35. PubMed ID: 15328107
    [Abstract] [Full Text] [Related]

  • 39. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.
    Geber A, Hitchcock CA, Swartz JE, Pullen FS, Marsden KE, Kwon-Chung KJ, Bennett JE.
    Antimicrob Agents Chemother; 1995 Dec 31; 39(12):2708-17. PubMed ID: 8593007
    [Abstract] [Full Text] [Related]

  • 40. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG.
    World J Microbiol Biotechnol; 2018 Mar 28; 34(4):55. PubMed ID: 29594560
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.