These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 15602702

  • 1. Identification and developmental expression of Xenopus paraxis.
    Tseng HT, Jamrich M.
    Int J Dev Biol; 2004 Dec; 48(10):1155-8. PubMed ID: 15602702
    [Abstract] [Full Text] [Related]

  • 2. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes.
    Yoon JK, Moon RT, Wold B.
    Dev Biol; 2000 Jun 15; 222(2):376-91. PubMed ID: 10837126
    [Abstract] [Full Text] [Related]

  • 3. Cloning and characterization of chicken Paraxis: a regulator of paraxial mesoderm development and somite formation.
    Barnes GL, Alexander PG, Hsu CW, Mariani BD, Tuan RS.
    Dev Biol; 1997 Sep 01; 189(1):95-111. PubMed ID: 9281340
    [Abstract] [Full Text] [Related]

  • 4. Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites.
    Burgess R, Cserjesi P, Ligon KL, Olson EN.
    Dev Biol; 1995 Apr 01; 168(2):296-306. PubMed ID: 7729571
    [Abstract] [Full Text] [Related]

  • 5. Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals.
    Šošić D, Brand-Saberi B, Schmidt C, Christ B, Olson EN.
    Dev Biol; 1997 May 15; 185(2):229-43. PubMed ID: 9187085
    [Abstract] [Full Text] [Related]

  • 6. Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevis.
    De Boer TP, Kok B, Neuteboom KI, Spieker N, De Graaf J, Destrée OH, Rook MB, Van Veen TA, Jongsma HJ, Vos MA, De Bakker JM, Van Der Heyden MA.
    Dev Dyn; 2005 Jul 15; 233(3):864-71. PubMed ID: 15895416
    [Abstract] [Full Text] [Related]

  • 7. Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.
    El-Hodiri H, Bhatia-Dey N, Kenyon K, Ault K, Dirksen M, Jamrich M.
    Int J Dev Biol; 2001 Jul 15; 45(1):265-71. PubMed ID: 11291856
    [Abstract] [Full Text] [Related]

  • 8. Xenopus paraxis homologue shows novel domains of expression.
    Carpio R, Honoré SM, Araya C, Mayor R.
    Dev Dyn; 2004 Nov 15; 231(3):609-13. PubMed ID: 15376281
    [Abstract] [Full Text] [Related]

  • 9. Requirement of the paraxis gene for somite formation and musculoskeletal patterning.
    Burgess R, Rawls A, Brown D, Bradley A, Olson EN.
    Nature; 1996 Dec 12; 384(6609):570-3. PubMed ID: 8955271
    [Abstract] [Full Text] [Related]

  • 10. cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos.
    Buchberger A, Seidl K, Klein C, Eberhardt H, Arnold HH.
    Dev Biol; 1998 Jul 15; 199(2):201-15. PubMed ID: 9698440
    [Abstract] [Full Text] [Related]

  • 11. The anterior/posterior polarity of somites is disrupted in paraxis-deficient mice.
    Johnson J, Rhee J, Parsons SM, Brown D, Olson EN, Rawls A.
    Dev Biol; 2001 Jan 01; 229(1):176-87. PubMed ID: 11133162
    [Abstract] [Full Text] [Related]

  • 12. Isolation and developmental expression of Mitf in Xenopus laevis.
    Kumasaka M, Sato H, Sato S, Yajima I, Yamamoto H.
    Dev Dyn; 2004 May 01; 230(1):107-13. PubMed ID: 15108314
    [Abstract] [Full Text] [Related]

  • 13. Isolation, expression and regulation of a zebrafish paraxis homologue.
    Shanmugalingam S, Wilson SW.
    Mech Dev; 1998 Nov 01; 78(1-2):85-9. PubMed ID: 9858695
    [Abstract] [Full Text] [Related]

  • 14. Dynamic expression of chicken cMeso2 in segmental plate and somites.
    Buchberger A, Bonneick S, Klein C, Arnold HH.
    Dev Dyn; 2002 Jan 01; 223(1):108-18. PubMed ID: 11803574
    [Abstract] [Full Text] [Related]

  • 15. The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate.
    Wilm B, James RG, Schultheiss TM, Hogan BL.
    Dev Biol; 2004 Jul 01; 271(1):176-89. PubMed ID: 15196959
    [Abstract] [Full Text] [Related]

  • 16. Control of the temporal and spatial Uncx4.1 expression in the paraxial mesoderm of avian embryos.
    Schrägle J, Huang R, Christ B, Pröls F.
    Anat Embryol (Berl); 2004 Jul 01; 208(4):323-32. PubMed ID: 15235909
    [Abstract] [Full Text] [Related]

  • 17. Expression of RhoB in the developing Xenopus laevis embryo.
    Vignal E, de Santa Barbara P, Guémar L, Donnay JM, Fort P, Faure S.
    Gene Expr Patterns; 2007 Jan 01; 7(3):282-8. PubMed ID: 17049930
    [Abstract] [Full Text] [Related]

  • 18. Expression of CAP2 during early Xenopus embryogenesis.
    Wolanski M, Khosrowshahian F, Jerant L, Jap IS, Brockman J, Crawford MJ.
    Int J Dev Biol; 2009 Jan 01; 53(7):1063-7. PubMed ID: 19598124
    [Abstract] [Full Text] [Related]

  • 19. epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads.
    Robb L, Mifsud L, Hartley L, Biben C, Copeland NG, Gilbert DJ, Jenkins NA, Harvey RP.
    Dev Dyn; 1998 Sep 01; 213(1):105-13. PubMed ID: 9733105
    [Abstract] [Full Text] [Related]

  • 20. Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors.
    Naye F, Tréguer K, Soulet F, Faucheux C, Fédou S, Thézé N, Thiébaud P.
    Int J Dev Biol; 2007 Sep 01; 51(8):745-52. PubMed ID: 17939122
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.